Home
Class 14
MATHS
The graph of the function y=16x^(2)+8(a+...

The graph of the function `y=16x^(2)+8(a+2)x-3a-2` is strictly above the x - axis, then number of integral velues of 'a' is

A

`2ltalt15`

B

`-15ltalt-2`

C

`17ltalt30`

D

`agt0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The graph of the function y=16x^(2)+8(a+5)x-7a-5 is strictly above the x axis,then 'a' must satisfy the inequality

The probability that the graph of y=16x^(2)+8(a+5)x-7a-5=0, is strictly above the x-axis,If a in[-20,0]

Integrate the functions (2x)/(1+x^(2))

The entire graph of the equation y=x^(2)+kx-x+9 in strictly above the x-a xi s if and only if (a)k -5 (d) none of these

Sketch the graph of the function y=2|x-2|-|x+1|+x.

Integrate the functions sqrt(x^(2)+3x)

Integrate the functions (x+3)/(x^(2)-2x-5)

The graph of curve x^(2)=3x-y-2 is strictly below the line y=k ,then-