Home
Class 14
MATHS
Solution of equation ((x-b)(x-c))/( (a-...

Solution of equation `((x-b)(x-c))/( (a-b)(a -c))+( (x-c)(x-a))/((b-c)(b-a))+( (x-a)(x-b))/((c-a)(c-b)) = 1` is/are.

A

0

B

6

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

x^((a+b-c)/((a-c)(b-c))),x^((b+c-a)/((b-a)(c-a))),x^((c+a-b)/((c-b)(a-b)))=

The quadratic equation ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 has (A) Two real and distinct roots (B) Two Equal roots (C) Non Real Complex Roots (D) Infinite roots

The quadratic equation ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 (A) Two real and distinct roots (B) Two equal roots (C) non real complex roots (D) infinite roots