Home
Class 14
MATHS
The number of solutions of the following...

The number of solutions of the following equationis `(a^2(x-b)(x-c))/((a-b)(a-c))+(b^2(x-c)(x-a))/((b-c)(b-a))+(c^2(x-a)(x-b))/((c-a)(c-b))=^2`

A

0

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of equation ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))=1 is/are.

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

x^((a+b-c)/((a-c)(b-c))),x^((b+c-a)/((b-a)(c-a))),x^((c+a-b)/((c-b)(a-b)))=

The roots of the quadratic equation (a+b-2c)x^(2)+(2a-b-c)x+(a-2b+c)=0 are

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

Prove that :((x^(a))/(x^(b)))^(a+b-c)((x^(b))/(x^(c)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)=1

The non-zero solution of the equation (a-x^(2))/(bx) - (b-x)/(c) = (c-x)/(b) - (b - x^(2))/(c x) , where b ne 0, c ne 0 is