Home
Class 14
MATHS
Find the values of x that satisfy 3|x^2+...

Find the values of x that satisfy `3|x^2+4x+2|=5x+16`

A

`{1,-10//3}`

B

`(-2,1)`

C

`{-2.-11//3}`

D

`{-2.1}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3|x^2 + 4x + 2| = 5x + 16\), we will break it down into steps. ### Step 1: Understand the Absolute Value The absolute value function \( |A| \) can be defined as: - \( A \) if \( A \geq 0 \) - \( -A \) if \( A < 0 \) In our case, we need to analyze the expression \( x^2 + 4x + 2 \). ### Step 2: Find the Roots of the Quadratic To determine when \( x^2 + 4x + 2 \) is positive or negative, we can find its roots using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 4, c = 2 \). Calculating the discriminant: \[ b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot 2 = 16 - 8 = 8 \] Now, using the quadratic formula: \[ x = \frac{-4 \pm \sqrt{8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \] Thus, the roots are \( x_1 = -2 + \sqrt{2} \) and \( x_2 = -2 - \sqrt{2} \). ### Step 3: Determine Intervals The quadratic \( x^2 + 4x + 2 \) opens upwards (since the coefficient of \( x^2 \) is positive). Therefore: - It is negative between the roots \( (-2 - \sqrt{2}, -2 + \sqrt{2}) \). - It is positive outside this interval. ### Step 4: Set Up Cases We will solve the equation in two cases based on the sign of \( x^2 + 4x + 2 \). **Case 1:** \( x^2 + 4x + 2 \geq 0 \) In this case, the equation becomes: \[ 3(x^2 + 4x + 2) = 5x + 16 \] Expanding and rearranging gives: \[ 3x^2 + 12x + 6 = 5x + 16 \implies 3x^2 + 7x - 10 = 0 \] Now, we can solve this quadratic using the quadratic formula: \[ x = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 3 \cdot (-10)}}{2 \cdot 3} = \frac{-7 \pm \sqrt{49 + 120}}{6} = \frac{-7 \pm \sqrt{169}}{6} = \frac{-7 \pm 13}{6} \] Calculating the two possible values: \[ x_1 = \frac{6}{6} = 1, \quad x_2 = \frac{-20}{6} = -\frac{10}{3} \] **Case 2:** \( x^2 + 4x + 2 < 0 \) In this case, the equation becomes: \[ 3(- (x^2 + 4x + 2)) = 5x + 16 \] This simplifies to: \[ -3x^2 - 12x - 6 = 5x + 16 \implies -3x^2 - 17x - 22 = 0 \implies 3x^2 + 17x + 22 = 0 \] Using the quadratic formula again: \[ x = \frac{-17 \pm \sqrt{17^2 - 4 \cdot 3 \cdot 22}}{2 \cdot 3} = \frac{-17 \pm \sqrt{289 - 264}}{6} = \frac{-17 \pm \sqrt{25}}{6} = \frac{-17 \pm 5}{6} \] Calculating the two possible values: \[ x_1 = \frac{-12}{6} = -2, \quad x_2 = \frac{-22}{6} = -\frac{11}{3} \] ### Step 5: Verify Solutions We need to verify which of these solutions fall within the respective cases. - For \( x = 1 \): \( x^2 + 4x + 2 = 1 + 4 + 2 = 7 \geq 0 \) (valid) - For \( x = -\frac{10}{3} \): \( x^2 + 4x + 2 = \left(-\frac{10}{3}\right)^2 + 4\left(-\frac{10}{3}\right) + 2 = \frac{100}{9} - \frac{40}{3} + 2 = \frac{100 - 120 + 18}{9} = -\frac{2}{9} < 0 \) (invalid) - For \( x = -2 \): \( x^2 + 4x + 2 = 0 \) (valid) - For \( x = -\frac{11}{3} \): \( x^2 + 4x + 2 = \left(-\frac{11}{3}\right)^2 + 4\left(-\frac{11}{3}\right) + 2 = \frac{121}{9} - \frac{44}{3} + 2 = \frac{121 - 132 + 18}{9} = \frac{7}{9} > 0 \) (invalid) ### Final Solutions The valid solutions are: \[ x = 1 \quad \text{and} \quad x = -2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(i) If f(x) = 3x^(4)- 5x^(2) + 7, " find " f(x-1) (ii) If f(x) = x^(2) - 3x + 4 , then find the values of x satisfying f(x) = f(2x+1)

Find all real values of x which satisfy x^(2)-3x+2>0 and x^(2)-2x-4<=0

Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

Find the values of x satisfying the equation 2sin x=3x^(2)+2x+3

Find the value of x satisfying the equation |x^(2)-x+4|-2-3|=x^(2)+x-12

Find the values of x satisfying the equation |x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1 .

Find the values of x and y which satisfy the equations: y+4x=9 and 3y+2x=5

Find the number of integal values of x satisfying sqrt(-x^2+10x-16) lt x -2