Home
Class 14
MATHS
Find all the values of x that satisfy (|...

Find all the values of x that satisfy `(|x-1|-3)(|x+2|-5)lt0`

A

`(-7,-2)`

B

(3,4)

C

`(-7,4)-(-2,3)`

D

`(-7,-2)uu(3,4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((|x-1|-3)(|x+2|-5) < 0\), we need to analyze the expression step by step. ### Step 1: Identify the critical points The critical points occur when each absolute value expression equals the constants. We set up the equations: 1. \(|x-1| - 3 = 0\) leads to \(|x-1| = 3\) - This gives us two cases: - \(x - 1 = 3 \implies x = 4\) - \(x - 1 = -3 \implies x = -2\) 2. \(|x+2| - 5 = 0\) leads to \(|x+2| = 5\) - This gives us two cases: - \(x + 2 = 5 \implies x = 3\) - \(x + 2 = -5 \implies x = -7\) The critical points are \(x = -7, -2, 3, 4\). ### Step 2: Test intervals between critical points We will test the sign of the expression \((|x-1|-3)(|x+2|-5)\) in the intervals defined by the critical points: 1. \((-∞, -7)\) 2. \((-7, -2)\) 3. \((-2, 3)\) 4. \((3, 4)\) 5. \((4, ∞)\) ### Step 3: Evaluate each interval 1. **Interval \((-∞, -7)\)**: Choose \(x = -8\) - \(|-8-1| - 3 = 9 - 3 = 6\) (positive) - \(|-8+2| - 5 = 6 - 5 = 1\) (positive) - Product: \(6 \cdot 1 > 0\) 2. **Interval \((-7, -2)\)**: Choose \(x = -5\) - \(|-5-1| - 3 = 6 - 3 = 3\) (positive) - \(|-5+2| - 5 = 3 - 5 = -2\) (negative) - Product: \(3 \cdot (-2) < 0\) 3. **Interval \((-2, 3)\)**: Choose \(x = 0\) - \(|0-1| - 3 = 1 - 3 = -2\) (negative) - \(|0+2| - 5 = 2 - 5 = -3\) (negative) - Product: \((-2) \cdot (-3) > 0\) 4. **Interval \((3, 4)\)**: Choose \(x = 3.5\) - \(|3.5-1| - 3 = 2.5 - 3 = -0.5\) (negative) - \(|3.5+2| - 5 = 5.5 - 5 = 0.5\) (positive) - Product: \((-0.5) \cdot 0.5 < 0\) 5. **Interval \((4, ∞)\)**: Choose \(x = 5\) - \(|5-1| - 3 = 4 - 3 = 1\) (positive) - \(|5+2| - 5 = 7 - 5 = 2\) (positive) - Product: \(1 \cdot 2 > 0\) ### Step 4: Combine results The expression is negative in the intervals: - \((-7, -2)\) - \((3, 4)\) ### Step 5: Write the final solution Thus, the solution to the inequality \((|x-1|-3)(|x+2|-5) < 0\) is: \[ x \in (-7, -2) \cup (3, 4) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all real values of x which satisfy x^(2)-3x+2>0 and x^(2)-2x-4<=0

Find all the real values of x for which (x-1)/(4x+5)lt(x-3)/(4x-3)

Find all possible integral values of x for which satisfy, x^2+3x-28lt0

If a lt 0, then the value of x satisfying x ^(2)-2a|x-a| -3a ^(2)=0 is/are

Let f(x)=1-x-x^(3) .Find all real values of x satisfying the inequality,1-f(x)-f^(3)(x)>f(1-5x)