Home
Class 14
MATHS
find f(8) if f ( x ) = x^ 2 + 2 x − 3...

find f(8) if f ( x ) = `x^ 2 + 2 x − 3`

A

77

B

75

C

70

D

80

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(8) \) for the function \( f(x) = x^2 + 2x - 3 \), follow these steps: ### Step 1: Substitute \( x \) with 8 in the function We need to find \( f(8) \), so we will substitute \( x \) with 8 in the function: \[ f(8) = 8^2 + 2(8) - 3 \] ### Step 2: Calculate \( 8^2 \) Calculate \( 8^2 \): \[ 8^2 = 64 \] ### Step 3: Calculate \( 2(8) \) Calculate \( 2 \times 8 \): \[ 2(8) = 16 \] ### Step 4: Combine the results Now, substitute the values back into the equation: \[ f(8) = 64 + 16 - 3 \] ### Step 5: Perform the addition and subtraction First, add \( 64 \) and \( 16 \): \[ 64 + 16 = 80 \] Then, subtract \( 3 \): \[ 80 - 3 = 77 \] ### Final Result Thus, the value of \( f(8) \) is: \[ f(8) = 77 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[-4,1],[3,2]] find f(A) if f(x) =x^2 - 2x+3

find f(4) if f(x)=x^(2)+2x-3

If A=[{:(-1,2),(3,1):}] , find f(A), where f(x)=x^(2)-2x+3.

Find f(2) and f(3) if f(x)=x^(2)+2x-3 .

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

If f(x)=x^(2)+2x+7, find f'(3)

If f:RrarrR defined by f(x)=x^(2)-2x+3 , then find f(f(x)) .

For the function f given by f(x)=x^(2)-6x+8, prove that f'(5)-3f'(2)=f'(8)