Home
Class 14
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15x^2+36x-48`on the set `A={x|x^2+20le9x}`is

A

7

B

6

C

8

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)|20<=9x} is

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

The real function f(x) =2x^(3)-3x^(2)-36x +7 is:

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is

If f(x)=2x^(3)-21x^(2)+36x-20 , then

Find the maximum and minimum values of the function y=4x^3 -15x^2 +12x – 2

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.