Home
Class 14
MATHS
The number of solutions for real x, whic...

The number of solutions for real x, which satisfy the equation `2log_2 log_2x+log_(1//2) log_2(2sqrt2x)=1`:

A

1

B

2

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 \log_2 (\log_2 x) + \log_{\frac{1}{2}} (\log_2 (2\sqrt{2}x)) = 1\), we will follow these steps: ### Step 1: Rewrite the logarithm with base \(\frac{1}{2}\) The term \(\log_{\frac{1}{2}} (\log_2 (2\sqrt{2}x))\) can be rewritten using the change of base formula: \[ \log_{\frac{1}{2}} y = -\log_2 y \] Thus, we can rewrite the equation as: \[ 2 \log_2 (\log_2 x) - \log_2 (\log_2 (2\sqrt{2}x)) = 1 \] ### Step 2: Simplify \(\log_2 (2\sqrt{2}x)\) Now, we simplify \(\log_2 (2\sqrt{2}x)\): \[ \log_2 (2\sqrt{2}x) = \log_2 (2) + \log_2 (\sqrt{2}) + \log_2 (x) = 1 + \frac{1}{2} + \log_2 (x) = \frac{3}{2} + \log_2 (x) \] ### Step 3: Substitute back into the equation Substituting this back into our equation gives: \[ 2 \log_2 (\log_2 x) - \log_2 \left(\frac{3}{2} + \log_2 x\right) = 1 \] ### Step 4: Isolate one of the logarithmic terms Rearranging the equation, we have: \[ 2 \log_2 (\log_2 x) = 1 + \log_2 \left(\frac{3}{2} + \log_2 x\right) \] ### Step 5: Exponentiate both sides Exponentiating both sides gives: \[ (\log_2 x)^2 = 2 \cdot \left(\frac{3}{2} + \log_2 x\right) \] This simplifies to: \[ (\log_2 x)^2 = 3 + 2 \log_2 x \] ### Step 6: Rearrange into standard quadratic form Rearranging this into standard quadratic form: \[ (\log_2 x)^2 - 2 \log_2 x - 3 = 0 \] ### Step 7: Factor the quadratic equation Factoring the quadratic equation: \[ (\log_2 x - 3)(\log_2 x + 1) = 0 \] ### Step 8: Solve for \(\log_2 x\) Setting each factor to zero gives: 1. \(\log_2 x - 3 = 0 \Rightarrow \log_2 x = 3 \Rightarrow x = 2^3 = 8\) 2. \(\log_2 x + 1 = 0 \Rightarrow \log_2 x = -1 \Rightarrow x = 2^{-1} = \frac{1}{2}\) ### Step 9: Conclusion Thus, the solutions for \(x\) are \(x = 8\) and \(x = \frac{1}{2}\). Therefore, the number of solutions for real \(x\) is **2**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all real numbers x which satisty the equation.2log_(2)log_(2)x+log_((1)/(2))log_(2)(2sqrt(2)x)=1

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1

Find all real numbers x which satisfy the equation 2(log)_(2)log backslash_(2)x+(log)_(1/2)(log)_(2)(2sqrt(2)x)=1

The solution set of 2log_(2)log_(2)x+log_((1)/(2))log_(2)(2sqrt(2)x)=1 is

Solve :2log_(2)(log_(2)x)+log_((1)/(2))(log_(2)2sqrt(2)x)=1

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :