Home
Class 14
MATHS
If alpha,betaare the roots of x^2+px+q=0...

If `alpha,beta`are the roots of `x^2+px+q=0` and `alpha^n,beta^n` are the roots of `x^(2n)+p^nx^n+q^n=0`, and if `(alpha/beta),(beta/alpha)` are the roots of `x^n+1+(x+1)^n=0`. Then n is

A

an integer

B

an odd integer

C

an even integer

D

an irrational number

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha,beta are the roots of x^(2)+px+q=0 adn x^(2n)+p^(n)x^(n)+q^(n)=0 and ilf(alpha/ beta),(beta/ alpha) are the roots of x^(n)+1+(x+1)^(n)=0, then n(in N) a.must be an odd integer b.may be any integer c.must be an even integer d.cannot say anything

alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then

If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation.