Home
Class 14
MATHS
log8 128=...

`log_8 128=`

Text Solution

Verified by Experts

Let `log _8"128"=xrArr8^x=128rArr2^(3x)=2^7rArr3x=7x=7/3thereforelog_8"128"=7/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(8-2sqrt(12))=sqrt(x)-sqrt(y) then find log_x 216 + log_y 128

The value of log_(4) 128 is

Find the value of 2log2/5 +3 log25/8 -log 625/128

Which of the following reduces to an integer? (1) (log32)/(log4) (2) (log_(5)128)/(log_(5)16-log_(5)4) (3) (2log6)/(log12+log3) (4) log_(4)8

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

For N>1, then product (1)/(log_(2)N)*(1)/(log_(N)8)*(1)/(log_(32)N)*(1)/(log_(N)128) simplifies to (a) (3)/(7) (b) (3)/(7ln2) (c) (3)/(5ln2)(d)(5)/(21)

-log_8 log_4 log_2 16=

Solve : log_8 (p^2 - p) - log_8 (p-1) = 2