Home
Class 14
MATHS
clog5log5(3125)....

`clog_5log_5(3125).`

Text Solution

AI Generated Solution

To solve the expression \( \log_5(\log_5(3125)) \), we will follow these steps: ### Step 1: Simplify \( \log_5(3125) \) We first need to find \( \log_5(3125) \). We know that \( 3125 \) can be expressed as a power of \( 5 \): \[ 3125 = 5^5 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(5)4*log_(2)5

log_5 2log_(11) 5log_(32) 11

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

The value of log_(3)4log_(4)5log_(5)6...log_(8)9=

5^(x)=3125

Arrange log _(2)5,log_(0.5)5,log_(7)5,log_(3)5 in decreasing order.

log_(5)2 + log_(5)20 - log_(5)8 = _____