Home
Class 14
MATHS
If log10x-log10sqrtx=2/(log10x), find th...

If `log_10x-log_10sqrtx=2/(log10x),` find the value of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10)x^(2) -log_(10)sqrt(y) =1 , find the value of y, when x=2

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

If log_(10)x-log_(10)sqrt(x)=2log_(x)10 , then a possible value of x is given by

If log_(10)x-log_(10)sqrt(x)=2log_(x)10, then possible value of x is given by

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

Positive numbers x,y and z satisfy xyz=10^(81) and (log_(10)x)(log_(10)yz)+(log_(10)y)(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)