Home
Class 14
MATHS
Find the value of logy"x"xxlogzyxxlogxz...

Find the value of `log_y"x"xxlog_zyxxlog_xz`

A

0

B

1

C

logx

D

xyz

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_y x \cdot \log_z y \cdot \log_x z \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_a b = \frac{1}{\log_b a} \] Let's solve the problem step by step. ### Step 1: Rewrite the logarithms using the change of base formula We can express each logarithm in terms of a common base. Let's choose base \( z \): \[ \log_y x = \frac{\log_z x}{\log_z y} \] \[ \log_z y = \log_z y \quad (\text{remains the same}) \] \[ \log_x z = \frac{\log_z z}{\log_z x} = \frac{1}{\log_z x} \quad (\text{since } \log_z z = 1) \] ### Step 2: Substitute these into the original expression Now substituting these into the original expression: \[ \log_y x \cdot \log_z y \cdot \log_x z = \left(\frac{\log_z x}{\log_z y}\right) \cdot \log_z y \cdot \left(\frac{1}{\log_z x}\right) \] ### Step 3: Simplify the expression Now, we can simplify the expression: \[ = \frac{\log_z x}{\log_z y} \cdot \log_z y \cdot \frac{1}{\log_z x} \] Notice that \( \log_z x \) in the numerator and denominator cancels out, and \( \log_z y \) also cancels out: \[ = 1 \] ### Final Answer Thus, the value of \( \log_y x \cdot \log_z y \cdot \log_x z \) is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of log_(5)10xxlog_(10)15xxlog_(15)20xxlog_(20)25 .

Find the value of (x^(log y - log z))(y^(log z-log x))(z^(log x - log y))

Find the value of log_(3^(2))5^(4)xxlog_(5^(2))3^(4) .

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)