Home
Class 14
MATHS
Given log 2 = 0.3010 and log 3= 0.4771, ...

Given `log 2 = 0.3010` and log 3= 0.4771, find the value of log 45.

Text Solution

Verified by Experts

`log45=log3^2+log5=2log3+log5=2xx0.4771+"log"10/2=0.9542+log10-log2=0.9542+1-0.3010=1.6532`
Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=0.3010andlog3=0.4771 , find the value of log 5

If log2=0.3010andlog3=0.4771 , find the value of log 6

If log2=0.3010andlog3=0.4771 , find the value of logsqrt(24)

If log2=0.301 and log3=0.477, find the value of log(3.375).

Givenlog (2)=0.3010 and log_(10)(3)=0.4771 find the value of 7log_(10)((10)/(9))-2log_(10)((25)/(24))+3log_(10)((81)/(80))

If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

If log _(10)2=0.3010 and log_(10)3=0.4771 ,find the value of log_(10)(2.25)

If log_(10)2 = 0.3010 and log_(10)3 = 0.4771 , then find the value log_(10) 135 .