Home
Class 14
MATHS
if log 3 = 0.4711, find the number of di...

if log 3 = 0.4711, find the number of digits in `3^(43)`

Text Solution

Verified by Experts

Let `x=3^(43)thereforelogx=log3^(43)=43log3=43xx0.4771=20.5153` Since the characteristic of `log3^(43)` is 20, then number of digits in `3^(43)` is `(20+1)=21.`
Promotional Banner

Similar Questions

Explore conceptually related problems

If log3= 0.4771, then find the number of digits in 3^(100)

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

If log2=0.301 and log3=0.477, find the number of digits in: (3^(15)xx2^(10))

Given log 3= 0.4771 ,then the number of digits in 3^(1000) is _______

If log2=0.30103, find the number of digits in 2^(56).

If log2=0.30103 , find the number of digits in 2^(56)

If log2 = 0.301 then find the number of digits in 2^(1024) .