Home
Class 14
MATHS
If log(5)[log(3)(log(2)x)]=1, then x is:...

If `log_(5)[log_(3)(log_(2)x)]=1`, then x is:

A

`2^234`

B

243

C

`2^243`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

y=log_(2)[log_(3)(log_(5)x)] ,then x=

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

If log_(5) log_(5) log_(3) x = 0 , then value of x is

log_(2)(3-x)+log_(2)(1-x)=3

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

log_(2)(x+1)-log_(2)(3x-1)=2

If y=log_(5)(log_(5)x)+10^(3log_(10)x), show that (dy)/(dx)=(1)/(x log_(5)x(log_(e)5)^(2))+3x^(2)

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to