Home
Class 14
MATHS
The log100x=-4, then the value of x is ...

The `log_100x=-4,` then the value of x is :

A

`1/(10)^(-4)`

B

`(10)^(-4)`

C

`1/(10)^8`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{100} x = -4 \), we can follow these steps: ### Step 1: Rewrite the logarithmic equation in exponential form Using the property of logarithms, we can rewrite the equation \( \log_{a} b = c \) as \( b = a^{c} \). In our case, this means: \[ 100^{{-4}} = x \] ### Step 2: Simplify \( 100^{-4} \) Next, we can express \( 100 \) as \( 10^2 \): \[ x = (10^2)^{-4} \] Using the power of a power property \( (a^m)^n = a^{m \cdot n} \), we get: \[ x = 10^{2 \cdot (-4)} = 10^{-8} \] ### Step 3: Express \( 10^{-8} \) in a different form We can rewrite \( 10^{-8} \) as: \[ x = \frac{1}{10^8} \] ### Conclusion Thus, the value of \( x \) is: \[ x = \frac{1}{10^8} \] ### Final Answer The value of \( x \) is \( \frac{1}{10^8} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(100) x=-4 , then the value of x is:

If log_(100)x =-1/2 , then the value of x is:

If log_(2) log_(10)4x=1 , then the value of x is:

If log_(7)x = 4/3 , then the value of x is:

If log_x (8x - 3) - log_x 4 =2 , then the value of x is