Home
Class 14
MATHS
if log(e)(x-1) + log(e)(x) + log(e)(x+1)...

if `log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0`, then

A

`x^2+e^(-1)`

B

`x^3-x-1=0`

C

`x^2+e-1=0`

D

`x^3-x-e=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of 2 log_(n) x- log_(n) (x+1) - log_(e)(x-1), the coefficient of x^(-4) is

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

If int(log_(x)e.log_(ex)e.log_(e^(2)x)e)/(x)dx=A log_(e)(log_(e)x)+Blog_(e)(1+log_(e)x)+Clog_(e)(2+log_(e)x)+lambda, then

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

If log e^(x)+log e^(1+x)=0 then x=

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

int_(1)^(x)log_(e)[x]dx