Home
Class 14
MATHS
The value of ("log"14/3+"log"(11)/5-"log...

The value of `("log"14/3+"log"(11)/5-"log"22/15)` is :

A

log 77

B

log 11

C

log 7

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log \frac{14}{3} + \log \frac{11}{5} - \log \frac{22}{15} \), we can use properties of logarithms. Here’s a step-by-step solution: ### Step 1: Combine the logarithms using the property of addition Using the property \( \log a + \log b = \log (a \cdot b) \), we can combine the first two logarithms: \[ \log \frac{14}{3} + \log \frac{11}{5} = \log \left( \frac{14}{3} \cdot \frac{11}{5} \right) \] ### Step 2: Simplify the expression inside the logarithm Now, we can multiply the fractions: \[ \frac{14}{3} \cdot \frac{11}{5} = \frac{14 \cdot 11}{3 \cdot 5} = \frac{154}{15} \] So, we have: \[ \log \left( \frac{154}{15} \right) - \log \frac{22}{15} \] ### Step 3: Use the property of subtraction Now we can apply the property \( \log a - \log b = \log \left( \frac{a}{b} \right) \): \[ \log \left( \frac{154}{15} \right) - \log \left( \frac{22}{15} \right) = \log \left( \frac{154/15}{22/15} \right) \] ### Step 4: Simplify the fraction The \( 15 \) in the numerator and denominator cancels out: \[ \frac{154/15}{22/15} = \frac{154}{22} \] ### Step 5: Further simplify \( \frac{154}{22} \) Now, we can simplify \( \frac{154}{22} \): \[ \frac{154}{22} = \frac{77}{11} = 7 \] ### Step 6: Write the final logarithmic expression Thus, we have: \[ \log 7 \] ### Final Answer The value of \( \log \frac{14}{3} + \log \frac{11}{5} - \log \frac{22}{15} \) is \( \log 7 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

the value of log_(3)11log_(11)13log_(13)15log_(15)27log_(27)81

The value of log ((18)/(14))+log((35)/(48))-log((15)/(16))=