Home
Class 14
MATHS
("log"a^3/(bc)+"log"b^3/(ac)+"log"c^3/(a...

`("log"a^3/(bc)+"log"b^3/(ac)+"log"c^3/(ab))` is equal to :

A

1

B

log abc

C

abc

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log \frac{a^3}{bc} + \log \frac{b^3}{ac} + \log \frac{c^3}{ab} \), we will use the properties of logarithms step by step. ### Step 1: Apply the Logarithm Property Using the property of logarithms that states \( \log \frac{x}{y} = \log x - \log y \), we can rewrite each term in the expression: \[ \log \frac{a^3}{bc} = \log a^3 - \log (bc) = 3 \log a - (\log b + \log c) \] \[ \log \frac{b^3}{ac} = \log b^3 - \log (ac) = 3 \log b - (\log a + \log c) \] \[ \log \frac{c^3}{ab} = \log c^3 - \log (ab) = 3 \log c - (\log a + \log b) \] ### Step 2: Combine the Terms Now, we can combine all the terms: \[ (3 \log a - \log b - \log c) + (3 \log b - \log a - \log c) + (3 \log c - \log a - \log b) \] ### Step 3: Group the Terms Grouping the logarithmic terms together, we have: \[ (3 \log a + 3 \log b + 3 \log c) - (\log a + \log b + \log c + \log a + \log b + \log c) \] This simplifies to: \[ 3 \log a + 3 \log b + 3 \log c - 2(\log a + \log b + \log c) \] ### Step 4: Simplify Further Let \( S = \log a + \log b + \log c \). Therefore, we can rewrite the expression as: \[ 3S - 2S = S \] ### Step 5: Final Expression Thus, we have: \[ \log a + \log b + \log c \] Using the property of logarithms that states \( \log x + \log y + \log z = \log (xyz) \), we can express the final result as: \[ \log (abc) \] ### Final Answer The final answer is: \[ \log (abc) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

[[[log((a^(2))/(bc))+log((b^(2))/(ac))+log((c^(2))/(ab))] is equal to a.0 b.1 c.2 d.abc is

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1 and n>0 then the value of (log a^(n)-log b^(n))/(log b^(n)-log c^(n)) is equal to

If log _(a)ab=x, then log_(b)ab is equal to

If log_(a)(ab)=x then log_(b)(ab) is equals to

log_(b)(a^((1)/(2)))*log_(c)b^(3)*log_(a)(c^((2)/(3))) is equal to

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to:

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to