Home
Class 14
MATHS
1/(log(ab)abc) + 1/(log(bc) abc) + 1/(lo...

`1/(log_(ab)abc) + 1/(log_(bc) abc) + 1/(log_(ca)abc)` is equal to:

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to:

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

Show that (1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1 .

(1)/((log_(a)bc)+1)+(1)/((log_(b)ac)+1)+(1)/((log_(c)ab)+1) is equal to

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

(1)/(log_(a)(ab))+(1)/(log_(b)(ab))=1

(1)/(log_(a)(ab)+(1)/(log_(b)(ab)=1))

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)