Home
Class 14
MATHS
The value of [1/(log(a//b)x) + 1/(log(b/...

The value of `[1/(log_(a//b)x) + 1/(log_(b//c)x) + 1/(log_(c//a) x)]` is:

A

0

B

1

C

abc

D

`x^3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

(1)/(log_(a)(b))xx(1)/(log_(b)(c))xx(1)/(log_(c)(a)) is equal to

If a,b,c are in GP then 1/(log_(a)x), 1/(log_(b)x), 1/(log_( c)x) are in:

(1)/(log_((a)/(b))x)+(1)/(log_((b)/(c))x)+(1)/(log_((c)/(a))x) is equal to:

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is