Home
Class 14
MATHS
if log(10)x = 1.9675, then the value of ...

if `log_(10)x = 1.9675`, then the value of `log_(10)(100x)` is:

A

196.75

B

3.9675

C

2.9675

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(100)x =-1/2 , then the value of x is:

If log_(2) log_(10)4x=1 , then the value of x is:

If x_(1) and x_(2) satisfy the equation x^(log_(10)x)=100x then the value of x_(1)x_(2) equals

log_(10){log10x}=1 then x

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If log_(10)x=a, find the values of 10^(a-1) in terms of x.

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is