Home
Class 14
MATHS
log(10)a^p.b^q.c^r=?...

`log_(10)a^p.b^q.c^r=?`

A

a) `pqr(log_(10)abc)`

B

b) `plog_(10)a+qlog_(10)b+rlog_(10)c`

C

c) `pqr(log_(10)a+log_(10)b+log_(10)c)`

D

d) `(log_(10)a)^p+(log_(10)b)^q+(log_(10)c)^r`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{10}(a^p \cdot b^q \cdot c^r) \), we can use the properties of logarithms. Here’s a step-by-step breakdown: ### Step 1: Apply the Product Rule of Logarithms The product rule states that the logarithm of a product is the sum of the logarithms. Therefore, we can express the logarithm of the product \( a^p \cdot b^q \cdot c^r \) as: \[ \log_{10}(a^p \cdot b^q \cdot c^r) = \log_{10}(a^p) + \log_{10}(b^q) + \log_{10}(c^r) \] **Hint:** Remember that the logarithm of a product can be split into the sum of the logarithms of the individual factors. ### Step 2: Apply the Power Rule of Logarithms The power rule states that the logarithm of a number raised to a power is the power times the logarithm of the number. Applying this rule to each term, we get: \[ \log_{10}(a^p) = p \cdot \log_{10}(a) \] \[ \log_{10}(b^q) = q \cdot \log_{10}(b) \] \[ \log_{10}(c^r) = r \cdot \log_{10}(c) \] ### Step 3: Combine the Results Now, substituting these results back into our expression from Step 1, we have: \[ \log_{10}(a^p \cdot b^q \cdot c^r) = p \cdot \log_{10}(a) + q \cdot \log_{10}(b) + r \cdot \log_{10}(c) \] ### Final Answer Thus, the final expression for \( \log_{10}(a^p \cdot b^q \cdot c^r) \) is: \[ \log_{10}(a^p \cdot b^q \cdot c^r) = p \cdot \log_{10}(a) + q \cdot \log_{10}(b) + r \cdot \log_{10}(c) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10) a= p and log_(10) b = q, then what is log_(10) (a^(p)b^(q)) equal to ?

(b) If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) , prove that a^(p)b^(q)c^(r)=1

If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) prove that a^(p)b^(q)c^(r)=1

If p = log_(a) bc, q = log_(b) ca and r = log_(c ) ab , then which of the following is true ?

If (log x)/(q-r)=(log y)/(r-p)=(log z)/(p-q) prove that x^(q+r)*y^(r+p)*z^(p+q)=x^(p)*y^(q).z^(r)

If a,b,c are in G.P.then log_(a)10,log_(b)10,log_(c)10 are in

If log_(8)p=25backslash and log_(2)q=5, then a.p=q^(15) b.p^(2)=q^(3) c.p=q^(5) d.p^(3)=q

If log_(b)a=3,log_(b)=-4. If the value of x satisfying theequation a^(3x)=c^(x)-1 is expressed in the form (p)/(q), where p and q are relatively prime then p+q is

The expression ((log_((a)/(b))p)^(2)+(log_((b)/(c))p)^(2)+(log_((a)/(a))p)^(2))/(((log_((a)/(b))p+log_((b)/(c))p+log_((c)/(a))p))^(2)) wherever defined,simplifies to