Home
Class 14
MATHS
Find the value of log(10)7sqrt13 if log(...

Find the value of `log_(10)7sqrt13` if `log_(10)13=1.1139`:

A

a) 0.15913

B

b) 0.5119

C

c) 1.15913

D

d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10} \left( 7 \sqrt{13} \right) \) given that \( \log_{10} 13 = 1.1139 \), we can follow these steps: ### Step 1: Rewrite the expression We can express \( 7 \sqrt{13} \) as \( 7 \cdot 13^{1/2} \). Therefore, we can write: \[ \log_{10} (7 \sqrt{13}) = \log_{10} (7 \cdot 13^{1/2}) \] ### Step 2: Apply the logarithm property Using the property of logarithms that states \( \log_b (xy) = \log_b x + \log_b y \), we can separate the logarithm: \[ \log_{10} (7 \cdot 13^{1/2}) = \log_{10} 7 + \log_{10} (13^{1/2}) \] ### Step 3: Simplify the logarithm of the power Using the property \( \log_b (x^n) = n \cdot \log_b x \), we can simplify \( \log_{10} (13^{1/2}) \): \[ \log_{10} (13^{1/2}) = \frac{1}{2} \log_{10} 13 \] ### Step 4: Substitute the known value Now we substitute the known value of \( \log_{10} 13 \): \[ \log_{10} (13^{1/2}) = \frac{1}{2} \cdot 1.1139 = 0.55695 \] ### Step 5: Combine the results Now we can express the logarithm of \( 7 \sqrt{13} \): \[ \log_{10} (7 \sqrt{13}) = \log_{10} 7 + 0.55695 \] ### Step 6: Find \( \log_{10} 7 \) Since we do not have the value of \( \log_{10} 7 \) directly, we can use a calculator or logarithm tables to find \( \log_{10} 7 \). For this example, let's assume \( \log_{10} 7 \approx 0.8451 \) (you can verify this using a calculator). ### Step 7: Final calculation Now we add the two logarithmic values: \[ \log_{10} (7 \sqrt{13}) = 0.8451 + 0.55695 = 1.40205 \] Thus, the value of \( \log_{10} (7 \sqrt{13}) \) is approximately \( 1.40205 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of log_(10) root(7)(13) if log_(10) 13 = 1.1139

Find the value of log_(10)0.13xx10^(8)

Find the value of log_(10)(10.1) given that log_(10) e=0.4343 .

Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)

Using differentials, find the approximate value of log_(10)10.1 when log_(10)e=0.4343 .

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Without using tables, find the value of 4log_(10)5+5log_(10)2-(1)/(2)log_(10)4 .

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

What is the value of [log_(13)10]//[log_(169)(10)] ?