Home
Class 14
MATHS
If log2x+log4x+log64x=5, find x :...

If `log_2x+log_4x+log_64x=5,` find x :

A

8

B

16

C

7

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2 x + \log_4 x + \log_{64} x = 5 \), we can follow these steps: ### Step 1: Change the bases to a common base We can express all logarithms in terms of base 2. We know that: - \( \log_4 x = \log_{2^2} x = \frac{1}{2} \log_2 x \) - \( \log_{64} x = \log_{2^6} x = \frac{1}{6} \log_2 x \) Thus, we can rewrite the equation as: \[ \log_2 x + \frac{1}{2} \log_2 x + \frac{1}{6} \log_2 x = 5 \] ### Step 2: Combine the logarithmic terms Let \( y = \log_2 x \). Then, we can rewrite the equation as: \[ y + \frac{1}{2}y + \frac{1}{6}y = 5 \] To combine these terms, we need a common denominator. The least common multiple of 1, 2, and 6 is 6. Thus, we rewrite each term: \[ \frac{6}{6}y + \frac{3}{6}y + \frac{1}{6}y = 5 \] Combining these gives: \[ \frac{6y + 3y + 1y}{6} = 5 \] \[ \frac{10y}{6} = 5 \] ### Step 3: Solve for \( y \) Now, we can simplify: \[ \frac{5y}{3} = 5 \] To isolate \( y \), multiply both sides by 3: \[ 5y = 15 \] Now divide by 5: \[ y = 3 \] ### Step 4: Substitute back to find \( x \) Recall that \( y = \log_2 x \), so: \[ \log_2 x = 3 \] To find \( x \), we rewrite this in exponential form: \[ x = 2^3 \] Thus: \[ x = 8 \] ### Final Answer The value of \( x \) is \( 8 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_2log_3log_4log_5A=x, then the value of A is (a) 120^x (b) 2^(60 x) (c) 2^(3^(4^(5^x))) (d) 5^(4^(3^(2^x)))

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

if log_(2)x+log_(4)x+log_(16)x=(21)/(4) find x

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is

If log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7 , then = ______ .

The number of solutions of equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(5)x