Home
Class 14
MATHS
If log(q)(xy)=3 and log(q)(x^(2)y^(3))=4...

If `log_(q)(xy)=3` and `log_(q)(x^(2)y^(3))=4`, find the value of `log_(q)x`,

A

4

B

5

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(p)x=alpha andlog _(q)x=beta, then the value of log_((p)/(q))x is

If log_(12)18=x and log_(24)4=y then find the value of xy-(2x+5y)+4

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

If x = log_(3) 4 " and " y = log_(5) 3 , find the value of log_(3) 10 " and " log_(3) (1 . 2) in terms of x and y .

If x=log_(3)4 and y=log_(5)3, find the value of log_(3)10 and log_(3)backslash(6)/(5) in terms of x and y.

The x,y,z are positive real numbers such that log_(2x)z=3,log_(5y)z=6, and log_(xy)z=(2)/(3), then the value of ((1)/(2z)) is .........

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

If log_(3)x+log_(3)y=2+log_(3)2 and log_(3)(x+y)=2 then value of x and y are