Home
Class 14
MATHS
if logx/(l+m-2n)=logy/(m+n-2l)=logz/(n+l...

if `logx/(l+m-2n)=logy/(m+n-2l)=logz/(n+l-2m)` then `xyz=`

A

0

B

1

C

lmn

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

(log x)/(l+m-2n)=(log y)/(m+n-2l)=(log z)/(n+l-2m)

If x=a^(m+n),y=a^(n+l) and z=a^(l+m), prove that x^(m)y^(n)z^(l)=x^(n)y^(l)z^(m)

Subtract: 3l(l-4m+5n) om 4l(10n-3m+2l)

If one root of the equation lx^(2)+mx+n=0 is (9)/(2) equal to (l,m and n are positive integers) and (m)/(4n)=(l)/(m), then l+n is equal to

(x^l /x^m)^n.(x^m/x^n)^l. (x^n/x^l)^m=

If f(x)=((x^(l))/(x^(m)))^(l+m)((x^(m))/(x^(n)))^(m+n)((x^(n))/(x^(l)))^(n+l) then f'(x)

|[(m+n)^(2), l^(2), mn], [(n+l)^(2), m^(2), ln], [(l+m)^(2), n^(2), lm]| =(l^(2) +m^(2) +n^(2))(l-m)(m-n)(n-l)(l+m+n)