Home
Class 14
MATHS
Find the value of (logsqrt27+logsqrt8-lo...

Find the value of `(logsqrt27+logsqrt8-logsqrt125)/(log6-log5)`:

A

`2/3`

B

`1/3`

C

`3/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\log \sqrt{27} + \log \sqrt{8} - \log \sqrt{125}) / (\log 6 - \log 5)\), we can follow these steps: ### Step 1: Simplify the logarithmic expressions We start by rewriting the square roots in terms of logarithms: \[ \log \sqrt{27} = \log(27^{1/2}) = \frac{1}{2} \log 27 \] \[ \log \sqrt{8} = \log(8^{1/2}) = \frac{1}{2} \log 8 \] \[ \log \sqrt{125} = \log(125^{1/2}) = \frac{1}{2} \log 125 \] ### Step 2: Substitute back into the expression Now substituting these into the original expression: \[ \frac{\frac{1}{2} \log 27 + \frac{1}{2} \log 8 - \frac{1}{2} \log 125}{\log 6 - \log 5} \] ### Step 3: Factor out the common term in the numerator We can factor out \(\frac{1}{2}\) from the numerator: \[ = \frac{\frac{1}{2} (\log 27 + \log 8 - \log 125)}{\log 6 - \log 5} \] ### Step 4: Use the properties of logarithms Using the property \(\log a + \log b = \log(ab)\) and \(\log a - \log b = \log\left(\frac{a}{b}\right)\): \[ = \frac{\frac{1}{2} \left(\log(27 \cdot 8) - \log 125\right)}{\log\left(\frac{6}{5}\right)} \] \[ = \frac{\frac{1}{2} \log\left(\frac{27 \cdot 8}{125}\right)}{\log\left(\frac{6}{5}\right)} \] ### Step 5: Calculate \(27 \cdot 8\) and simplify Calculating \(27 \cdot 8\): \[ 27 \cdot 8 = 216 \] Now substituting back: \[ = \frac{\frac{1}{2} \log\left(\frac{216}{125}\right)}{\log\left(\frac{6}{5}\right)} \] ### Step 6: Simplify \(\frac{216}{125}\) We can express \(216\) and \(125\) as powers: \[ 216 = 6^3 \quad \text{and} \quad 125 = 5^3 \] Thus: \[ \frac{216}{125} = \frac{6^3}{5^3} = \left(\frac{6}{5}\right)^3 \] So: \[ \log\left(\frac{216}{125}\right) = \log\left(\left(\frac{6}{5}\right)^3\right) = 3 \log\left(\frac{6}{5}\right) \] ### Step 7: Substitute back into the expression Now substituting this back: \[ = \frac{\frac{1}{2} \cdot 3 \log\left(\frac{6}{5}\right)}{\log\left(\frac{6}{5}\right)} \] The \(\log\left(\frac{6}{5}\right)\) cancels out: \[ = \frac{3}{2} \] ### Final Answer Thus, the value of the expression is: \[ \frac{3}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

Find the value of (logsqrt27+log8+logsqrt1000)/(log120)

Find the value of (log sqrt(27) + log sqrt(8) - log sqrt(125))/(log 6 - log 5)

Find the value of (log sqrt(27)+log8-log sqrt(1000))/(log(1.2))

Find the value of : ( log )_(81)27

Prove that (log3sqrt(3)+log sqrt(8)-log sqrt(125))/(log6-log5)=(3)/(2)