Home
Class 14
MATHS
Find the value of 1/(log3e)+1/(log3e^2)+...

Find the value of `1/(log_3e)+1/(log_3e^2)+1/(log_3e^4)+...` is

A

`log_e9`

B

0

C

1

D

`log_e270`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the series \[ S = \frac{1}{\log_3 e} + \frac{1}{\log_3 e^2} + \frac{1}{\log_3 e^4} + \ldots \] we can start by rewriting the terms in a more manageable form using the properties of logarithms. ### Step 1: Rewrite the terms using logarithm properties Using the property of logarithms, we have: \[ \log_3 e^n = n \cdot \log_3 e \] Thus, we can rewrite the series as: \[ S = \frac{1}{\log_3 e} + \frac{1}{2 \log_3 e} + \frac{1}{4 \log_3 e} + \ldots \] ### Step 2: Factor out the common term Notice that each term has a common factor of \(\log_3 e\): \[ S = \frac{1}{\log_3 e} \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots\right) \] ### Step 3: Identify the series inside the parentheses The series inside the parentheses is a geometric series where the first term \(a = 1\) and the common ratio \(r = \frac{1}{2}\). ### Step 4: Find the sum of the geometric series The sum \(S_g\) of an infinite geometric series can be calculated using the formula: \[ S_g = \frac{a}{1 - r} \] Substituting the values: \[ S_g = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \] ### Step 5: Substitute back to find \(S\) Now substituting back into our expression for \(S\): \[ S = \frac{1}{\log_3 e} \cdot 2 = \frac{2}{\log_3 e} \] ### Step 6: Use the change of base formula Using the change of base formula for logarithms, we can express \(\log_3 e\) in terms of natural logarithms: \[ \log_3 e = \frac{\log_e e}{\log_e 3} = \frac{1}{\log_e 3} \] Thus, we have: \[ S = \frac{2}{\frac{1}{\log_e 3}} = 2 \log_e 3 \] ### Step 7: Final result The final result can be expressed as: \[ S = \log_e 9 \] ### Conclusion Thus, the value of the series is: \[ \log_e 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

given k=log_(3)2 find the value of (1)/(log_(3)4)+(1)/(log_(3)4)+(1)/(log_(3)3)+......+(1)/(log_(3)15)

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Find the exact value of [log_(c)1]+[log_(e)2]+[log_(c)3]+.........+[log_(c)66]

1+log_e x+ (log_e x)^2/2!+(log_e x)^3/3!+...=