Home
Class 14
MATHS
Find the value of (b^2)^5logbx:...

Find the value of `(b^2)^5log_bx`:

A

`10^x`

B

`x^4`

C

10x

D

`x^10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((b^2)^5 \log_b x\), we can follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ (b^2)^5 \log_b x \] Using the power of a power property, we can simplify \((b^2)^5\) as follows: \[ (b^2)^5 = b^{2 \cdot 5} = b^{10} \] So, we rewrite the expression: \[ b^{10} \log_b x \] ### Step 2: Apply the logarithmic property Next, we can use the property of logarithms that states: \[ a^m \log_a b = b^m \log_a a \] In our case, we can apply this property to our expression: \[ b^{10} \log_b x = x^{10} \log_b b \] ### Step 3: Simplify further Since \(\log_b b = 1\), we can simplify our expression further: \[ x^{10} \log_b b = x^{10} \cdot 1 = x^{10} \] ### Conclusion Thus, the value of \((b^2)^5 \log_b x\) is: \[ \boxed{x^{10}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (3^(2))^(5log_(3)x) :

Find the value of 3^(2+log_3 5)

Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)

Solve using the identity log_(a)(b)=(log b)/(log a). Find the value of log_(25)(50)*log_(50)(25)

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of S=log_(2)4+log_(8)2+2^(log_(2)3)+3^(log_(5)4)-4^(log_(5)3)

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Without using tables, find the value of 4log_(10)5+5log_(10)2-(1)/(2)log_(10)4 .

find the value of log_(2)log_(2)log_(2)16=