Home
Class 14
MATHS
The set of all the solution of the equat...

The set of all the solution of the equation
`log_(5)x log_(6)x log_(7)x = log_(5)x. log_(6)x + log_(6)x. log_(7)x + log_(7)x. log_(5)x` is

A

{0,1}

B

{1,210}

C

{1,5,6,7,210}

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

The number of solutions of equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(5)x

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Find the square of the sum of the roots of the equation log_(3)x.log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x. log_(5)x+log_(5)x.log_(3)x

The sum of all the solutions of the equation (log_(27)x^(3))^(2)=log_(27)x^(6), is

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x

How many values of (xgt1) satisfy the following equation: log_(2)xxlog_(4)xxlog_(6)x=log_(2)x.log_(4)x+log_(2)x.log_(6)x+log_(4)x.log_(6)x ?

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..