Home
Class 14
MATHS
The value of 1/(log100n)+1/(log99n)+1/(l...

The value of `1/(log_100n)+1/(log_99n)+1/(log_98n)+...+1/(log_2n)` is :

A

1

B

`1/(log_1001n)`

C

`1/(log_n991)`

D

`1/(log_n1001)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{\log_{100} n} + \frac{1}{\log_{99} n} + \frac{1}{\log_{98} n} + \ldots + \frac{1}{\log_{2} n} \), we can follow these steps: ### Step 1: Use the Change of Base Formula We start by applying the change of base formula for logarithms, which states that: \[ \log_a b = \frac{\log_c b}{\log_c a} \] Using this property, we can rewrite each term in the sum: \[ \frac{1}{\log_{k} n} = \frac{\log n}{\log k} \] for \( k = 100, 99, 98, \ldots, 2 \). ### Step 2: Rewrite the Sum Now we can rewrite the entire sum: \[ \frac{1}{\log_{100} n} + \frac{1}{\log_{99} n} + \frac{1}{\log_{98} n} + \ldots + \frac{1}{\log_{2} n} = \log n \left( \frac{1}{\log 100} + \frac{1}{\log 99} + \frac{1}{\log 98} + \ldots + \frac{1}{\log 2} \right) \] ### Step 3: Simplify the Inner Sum Let’s denote the inner sum as \( S \): \[ S = \frac{1}{\log 100} + \frac{1}{\log 99} + \frac{1}{\log 98} + \ldots + \frac{1}{\log 2} \] This sum can be expressed in terms of logarithms. ### Step 4: Use the Property of Logarithms We can use the property of logarithms that states: \[ \log a + \log b + \log c + \ldots = \log (a \cdot b \cdot c \cdots) \] Thus, we can express \( S \) in terms of a single logarithm: \[ S = \log \left( 100 \times 99 \times 98 \times \ldots \times 2 \right) \] This product can be recognized as \( 100! \) (100 factorial). ### Step 5: Final Expression Now, substituting back into our expression, we have: \[ \frac{1}{\log_{100} n} + \frac{1}{\log_{99} n} + \frac{1}{\log_{98} n} + \ldots + \frac{1}{\log_{2} n} = \log n \cdot S = \log n \cdot \frac{1}{\log (100!)} \] Thus, the final result is: \[ \frac{\log n}{\log (100!)} \] ### Summary The value of \( \frac{1}{\log_{100} n} + \frac{1}{\log_{99} n} + \frac{1}{\log_{98} n} + \ldots + \frac{1}{\log_{2} n} \) is: \[ \frac{\log n}{\log (100!)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

Let n=75600 ,then find the value of (4)/(log_(2)n)+(3)/(log_(3)n)+(2)/(log_(5)n)+(1)/(log_(7)n)

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)

( The value of )/(log_(2)N)+(1)/(log_(4)N)+...+(1)/(log_(1988)N) is ;(N>0 and N!=0)( i) (1)/(log_(1998)((1)/(N)))( ii) log_(N)(1998!) (iii) log _(N)1998 (iv) none of these

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these