Home
Class 14
MATHS
If log2(1+3^(x-1)+2=log2(3^(2x-2)+7), th...

If `log_2(1+3^(x-1)+2=log_2(3^(2x-2)+7),` then x is:

A

0

B

1

C

2

D

both (b) and ©

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2(1 + 3^{x-1}) + 2 = \log_2(3^{2x-2} + 7) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \log_2(1 + 3^{x-1}) + 2 = \log_2(3^{2x-2} + 7) \] We can rewrite \(2\) as \(\log_2(4)\) since \(2 = \log_2(4)\). Thus, we have: \[ \log_2(1 + 3^{x-1}) + \log_2(4) = \log_2(3^{2x-2} + 7) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \(\log_a(b) + \log_a(c) = \log_a(b \cdot c)\), we can combine the left-hand side: \[ \log_2(4(1 + 3^{x-1})) = \log_2(3^{2x-2} + 7) \] ### Step 3: Set the arguments equal Since the bases of the logarithms are the same, we can set the arguments equal to each other: \[ 4(1 + 3^{x-1}) = 3^{2x-2} + 7 \] ### Step 4: Expand and simplify Expanding the left-hand side gives: \[ 4 + 4 \cdot 3^{x-1} = 3^{2x-2} + 7 \] Now, rearranging the equation: \[ 4 \cdot 3^{x-1} = 3^{2x-2} + 7 - 4 \] \[ 4 \cdot 3^{x-1} = 3^{2x-2} + 3 \] ### Step 5: Substitute \(t = 3^{x-1}\) Let \(t = 3^{x-1}\). Then, \(3^{2x-2} = (3^{x-1})^2 = t^2\). Substituting these into the equation gives: \[ 4t = t^2 + 3 \] ### Step 6: Rearrange into a standard quadratic equation Rearranging gives: \[ t^2 - 4t + 3 = 0 \] ### Step 7: Factor the quadratic equation Factoring the quadratic: \[ (t - 3)(t - 1) = 0 \] ### Step 8: Solve for \(t\) Setting each factor to zero gives: 1. \(t - 3 = 0 \Rightarrow t = 3\) 2. \(t - 1 = 0 \Rightarrow t = 1\) ### Step 9: Back-substitute for \(x\) Recall that \(t = 3^{x-1}\): 1. If \(t = 3\): \[ 3^{x-1} = 3 \Rightarrow x - 1 = 1 \Rightarrow x = 2 \] 2. If \(t = 1\): \[ 3^{x-1} = 1 \Rightarrow x - 1 = 0 \Rightarrow x = 1 \] ### Final Answer Thus, the solutions for \(x\) are: \[ x = 1 \quad \text{and} \quad x = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)(3^(2x-2)+7)=2+log_(2)(3^(x-1)+1) then x=

If x satisfies log_2(9^(x-1)+7)=2+log_2(3^(x-1)+1) , then

If log_3 2+log_3 (2^x-7/2)=2log_3 (2^x-5) then x=

log_(2)(x+1)-log_(2)(3x-1)=2

Solve log_2(4xx3^x-6)-log_2(9^x-6)=1 .

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

log_(2)(3-x)+log_(2)(1-x)=3

Solve log_(2)(3x-2)=log_((1)/(2))x