Home
Class 14
MATHS
Find x, if log(2x)sqrtx+log(2sqrtx)x=0:...

Find x, if `log_(2x)sqrtx+log_(2sqrtx)x=0`:

A

`1,2^(-5/6)`

B

`1,2^(-6//5)`

C

`4,-2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{2x} \sqrt{x} + \log_{2\sqrt{x}} x = 0 \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms in terms of base 2: \[ \log_{2x} \sqrt{x} = \frac{\log_2 \sqrt{x}}{\log_2 (2x)} \quad \text{and} \quad \log_{2\sqrt{x}} x = \frac{\log_2 x}{\log_2 (2\sqrt{x})} \] ### Step 2: Simplify the logarithms Now, simplify the logarithms: - For \( \log_2 \sqrt{x} \): \[ \log_2 \sqrt{x} = \log_2 x^{1/2} = \frac{1}{2} \log_2 x \] - For \( \log_2 (2x) \): \[ \log_2 (2x) = \log_2 2 + \log_2 x = 1 + \log_2 x \] - For \( \log_2 (2\sqrt{x}) \): \[ \log_2 (2\sqrt{x}) = \log_2 2 + \log_2 \sqrt{x} = 1 + \frac{1}{2} \log_2 x \] ### Step 3: Substitute back into the equation Now substitute these back into the equation: \[ \frac{\frac{1}{2} \log_2 x}{1 + \log_2 x} + \frac{\log_2 x}{1 + \frac{1}{2} \log_2 x} = 0 \] ### Step 4: Set a variable for simplification Let \( y = \log_2 x \). Then the equation becomes: \[ \frac{\frac{1}{2} y}{1 + y} + \frac{y}{1 + \frac{1}{2} y} = 0 \] ### Step 5: Find a common denominator and simplify The common denominator for the left-hand side is \( (1 + y)(1 + \frac{1}{2} y) \): \[ \frac{\frac{1}{2} y (1 + \frac{1}{2} y) + y(1 + y)}{(1 + y)(1 + \frac{1}{2} y)} = 0 \] This simplifies to: \[ \frac{\frac{1}{2} y + \frac{1}{4} y^2 + y + y^2}{(1 + y)(1 + \frac{1}{2} y)} = 0 \] Combine like terms: \[ \frac{\frac{5}{4} y^2 + \frac{3}{2} y}{(1 + y)(1 + \frac{1}{2} y)} = 0 \] ### Step 6: Set the numerator to zero Set the numerator equal to zero: \[ \frac{5}{4} y^2 + \frac{3}{2} y = 0 \] Factor out \( y \): \[ y \left( \frac{5}{4} y + \frac{3}{2} \right) = 0 \] This gives us two solutions: 1. \( y = 0 \) 2. \( \frac{5}{4} y + \frac{3}{2} = 0 \) ### Step 7: Solve for \( y \) From \( y = 0 \): \[ \log_2 x = 0 \implies x = 2^0 = 1 \] From \( \frac{5}{4} y + \frac{3}{2} = 0 \): \[ \frac{5}{4} y = -\frac{3}{2} \implies y = -\frac{3/2}{5/4} = -\frac{3 \cdot 4}{2 \cdot 5} = -\frac{6}{5} \] Thus, \[ \log_2 x = -\frac{6}{5} \implies x = 2^{-\frac{6}{5}} = \frac{1}{2^{6/5}} = \frac{1}{\sqrt[5]{64}} = \frac{1}{4\sqrt[5]{4}} \] ### Final Solutions The solutions for \( x \) are: 1. \( x = 1 \) 2. \( x = \frac{1}{\sqrt[5]{64}} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(sqrtx)sqrtx=?

Find x if log_(2) log_(1//2) log_(3) x gt 0

Find x if 3^(log_(a)x)+3.x^(log_(a)3)=2

(log_(2)x)^(2)+4(log_(2)x)-1=0

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

If log_(6)log_(2)[sqrt(4x+2)+2sqrtx]=0thenx=____.

Draw the graph of y= log_(x)sqrtx