Home
Class 14
MATHS
Find x if log(1//sqrt(2)) (1//sqrt(8)) =...

Find x if `log_(1//sqrt(2)) (1//sqrt(8)) = log_(2)(4^(x) +1). Log(4^(x+1) +4)`,

A

0

B

1

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if (1)/(2)log_(10)(11+4sqrt(7))=log_(10)(2+x)

log_(2)sqrt(x)+log_(2)sqrt(x)=4

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

Solve: log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)

Solve :log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)

If log_(2)(4^(x+1)+4)log_(2)(4^(x)+1)=log_(2)(8) then x equals what

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

If x = log_((1)/(2)).(4)/(3).log_(2).(1)/(3). log_((2)/(3)) 0.8 , then ______.