Home
Class 14
MATHS
For every p being real number the soluti...

For every p being real number the solution set of the inequality `log_10P+(log_(10)10p)^2+(log_(10)100p)^2lelog_10(10)^9`

A

`pge10^-4`

B

`pgt10^(1//2)`

C

`10^-4leple10^(1//2)`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{10} P + (\log_{10} (10P))^2 + (\log_{10} (100P))^2 \leq \log_{10} (10^9) \), we will follow these steps: ### Step 1: Simplify the logarithmic expressions We start by rewriting the logarithmic terms: - \( \log_{10} (10P) = \log_{10} 10 + \log_{10} P = 1 + \log_{10} P \) - \( \log_{10} (100P) = \log_{10} 100 + \log_{10} P = 2 + \log_{10} P \) Let \( a = \log_{10} P \). Then we can rewrite the inequality as: \[ a + (1 + a)^2 + (2 + a)^2 \leq 9 \] ### Step 2: Expand the squares Now, we expand the squares: - \( (1 + a)^2 = 1 + 2a + a^2 \) - \( (2 + a)^2 = 4 + 4a + a^2 \) Substituting these back into the inequality gives: \[ a + (1 + 2a + a^2) + (4 + 4a + a^2) \leq 9 \] ### Step 3: Combine like terms Combining all the terms, we get: \[ a + 1 + 2a + a^2 + 4 + 4a + a^2 \leq 9 \] This simplifies to: \[ 2a^2 + 7a + 5 \leq 9 \] ### Step 4: Rearrange the inequality Rearranging the inequality gives: \[ 2a^2 + 7a + 5 - 9 \leq 0 \] or \[ 2a^2 + 7a - 4 \leq 0 \] ### Step 5: Factor the quadratic Next, we factor the quadratic equation: \[ 2a^2 + 7a - 4 = 0 \] Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 2, b = 7, c = -4 \) - The discriminant \( D = 7^2 - 4 \cdot 2 \cdot (-4) = 49 + 32 = 81 \) Calculating the roots: \[ a = \frac{-7 \pm \sqrt{81}}{2 \cdot 2} = \frac{-7 \pm 9}{4} \] This gives us the roots: \[ a_1 = \frac{2}{4} = \frac{1}{2}, \quad a_2 = \frac{-16}{4} = -4 \] ### Step 6: Determine the intervals The quadratic \( 2a^2 + 7a - 4 \) opens upwards (since the coefficient of \( a^2 \) is positive). Thus, it is less than or equal to zero between the roots: \[ -4 \leq a \leq \frac{1}{2} \] ### Step 7: Convert back to \( P \) Since \( a = \log_{10} P \), we can write: \[ -4 \leq \log_{10} P \leq \frac{1}{2} \] This implies: \[ 10^{-4} \leq P \leq 10^{\frac{1}{2}} \] or \[ 10^{-4} \leq P \leq \sqrt{10} \] ### Final Answer Thus, the solution set for the inequality is: \[ P \in [10^{-4}, \sqrt{10}] \]
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|547 Videos
  • MENSURATION

    QUANTUM CAT|Exercise QUESTION BANK|449 Videos

Similar Questions

Explore conceptually related problems

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

log_(10)3+log_(10)2-2log_(10)5

log_(10)10+log_(10)10^(2)+ . . .+log_(10)10^(n)

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

The number of real solution of the equation log_(10)(7x-9)^(2)+log_(10)(3x-4)^(2)=2 is

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x)^(2))

Number of real solutions of the equation sqrt(log_(10)(-x))=log_(10)(sqrt(x^(2)))

QUANTUM CAT-LOGARITHM-QUESTION BANK
  1. The greatest possible value of n could be if 9^(n)lt10^(8), given tha...

    Text Solution

    |

  2. The set of all x satisfying the equation x^(log)3x^2+((log)3x)^(2-10)=...

    Text Solution

    |

  3. The set of all the solution of the inequality log(2-x) (x-3) ge 1 is :

    Text Solution

    |

  4. If log3 30=1/a and log5 30=1/b then the value of 3log30 2 is:

    Text Solution

    |

  5. The set of all values of x satisfying x^(logx|3-x|^2)=4:

    Text Solution

    |

  6. The set of all x satisfying 4^(x^2+2)-9.2^(x^2+2)+8=0

    Text Solution

    |

  7. The equation x^([(log(3)x)^(2) - 9/2 log(3) x + 5] ) = 3sqrt3 has

    Text Solution

    |

  8. Number of real values of x satisfying the equation log(x^2+6x+8)(log(2...

    Text Solution

    |

  9. For every p being real number the solution set of the inequality log10...

    Text Solution

    |

  10. The number of real solutions of the equation 2log2log2x+log(1//2)log2(...

    Text Solution

    |

  11. The number of solutions of the equation log(x//2)x^(2) + 40 log(4x)...

    Text Solution

    |

  12. Find the value interval of x for the inequality -6lex^2-5xle6 .

    Text Solution

    |

  13. The value of x satisfying the inequalities hold: qquad log(0.2)(x+5)>...

    Text Solution

    |

  14. The least value of expression 2 log(10)x - log(x) (1//100) for x gt 1 ...

    Text Solution

    |

  15. The equation x^((3)/4 (log2x)^2+log2 x -(5)/(4))=sqrt(2) has :

    Text Solution

    |

  16. The number of solutions of the equation log((2x + 3)) ( 6x^(2) + 23...

    Text Solution

    |

  17. The set of real values of x satisfying the equation |x-1|^(log3(x^2)-...

    Text Solution

    |

  18. Let (x0,y0) be the solution of the following equations (2x)^(In2)=(3...

    Text Solution

    |

  19. The number log20 3 lies in

    Text Solution

    |

  20. Find the number of zeros in the product of 10!.

    Text Solution

    |