Home
Class 6
MATHS
Find the value of the (-2)^(3)xx5^(2)...

Find the value of the
`(-2)^(3)xx5^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((-2)^{3} \times 5^{2}\), we can break it down step by step. ### Step 1: Calculate \((-2)^{3}\) The expression \((-2)^{3}\) means we need to multiply \(-2\) by itself 3 times: \[ (-2) \times (-2) \times (-2) \] Calculating this: 1. First, multiply the first two \(-2\): \[ (-2) \times (-2) = 4 \] 2. Now, multiply the result by the third \(-2\): \[ 4 \times (-2) = -8 \] So, \((-2)^{3} = -8\). ### Step 2: Calculate \(5^{2}\) The expression \(5^{2}\) means we need to multiply \(5\) by itself 2 times: \[ 5 \times 5 \] Calculating this: \[ 5 \times 5 = 25 \] So, \(5^{2} = 25\). ### Step 3: Multiply the results from Step 1 and Step 2 Now we need to multiply the results from the previous steps: \[ (-8) \times 25 \] Calculating this: \[ -8 \times 25 = -200 \] ### Final Answer Thus, the value of the expression \((-2)^{3} \times 5^{2}\) is \(-200\). ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Find the value of the (-(2)/(5))^(3)

Find the value of the 2^(3)xx (-3)^(2) .

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Find the value of the (5^(4)xx7^(5))/(5^(2)xx7^(4))

Find the value of : -5-(-3)+2

Find the value of (3x^(3)) xx (-5xy^(2)) xx (2x^(2)yz^(3)) for x = 1, y = 2 and z = 3.

If x = 2 and y = 1, Find the value of (-4x^(2)y^(3)) xx (-5x^(2)y^(5)) .

Find the value of x , if 5^(x-2)xx3^(2x-3)=135

Find the value of n, given : (2xx4^(3)xx2^(n-4)xx3xx2^(n+2))/(3^(3)xx2^(16))=(2)/(9)