Home
Class 6
MATHS
Evaluate the sqrt(20-sqrt(16))...

Evaluate the
`sqrt(20-sqrt(16))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sqrt{20 - \sqrt{16}} \), we will follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \sqrt{20 - \sqrt{16}} \] ### Step 2: Calculate \( \sqrt{16} \) Next, we need to evaluate \( \sqrt{16} \): \[ \sqrt{16} = 4 \] ### Step 3: Substitute back into the expression Now, we substitute \( \sqrt{16} \) back into the expression: \[ \sqrt{20 - 4} \] ### Step 4: Simplify the expression inside the square root Now we simplify \( 20 - 4 \): \[ 20 - 4 = 16 \] ### Step 5: Calculate \( \sqrt{16} \) Finally, we calculate \( \sqrt{16} \): \[ \sqrt{16} = 4 \] ### Final Answer Thus, the value of \( \sqrt{20 - \sqrt{16}} \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the sqrt(4+sqrt(144))

Evaluate the 20 -sqrt(256)

Evaluate : int (sqrt(1-sqrt(x)))/(sqrt(1+sqrt(x)))dx

Evaluate: int(sqrt(a)-sqrt(x))/(1-sqrt(a x))\ dx

Evaluate : (i)sqrt(3-2sqrt(2))" "(ii)sqrt(9+6sqrt(2))

Evaluate (sqrt(3)-sqrt(2))^6+(sqrt(3)+sqrt(2))^6dot

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)), is being given that sqrt(5)=2. 236 and sqrt(10)=3.1362

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)), is being given that sqrt(5)=2. 236 and sqrt(10)=3. 1362

Evaluate : sqrt(248 + sqrt(52 + sqrt(144)))

Evaluate x=sqrt(6+sqrt(6+sqrt(6+oodot)))