Home
Class 6
MATHS
Find the value of the (5^(4)xx7^(5))/(...

Find the value of the
`(5^(4)xx7^(5))/(5^(2)xx7^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((5^{4} \times 7^{5})/(5^{2} \times 7^{4})\), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \frac{5^{4} \times 7^{5}}{5^{2} \times 7^{4}} \] ### Step 2: Apply the laws of exponents Using the property of exponents that states \(\frac{a^{m}}{a^{n}} = a^{m-n}\), we can simplify the expression: \[ = 5^{4-2} \times 7^{5-4} \] ### Step 3: Simplify the exponents Now, we simplify the exponents: \[ = 5^{2} \times 7^{1} \] ### Step 4: Calculate the values Next, we calculate the values: \[ 5^{2} = 25 \quad \text{and} \quad 7^{1} = 7 \] Thus, we have: \[ = 25 \times 7 \] ### Step 5: Multiply the results Finally, we multiply the two results: \[ 25 \times 7 = 175 \] ### Final Answer The value of the expression \((5^{4} \times 7^{5})/(5^{2} \times 7^{4})\) is: \[ \boxed{175} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the 3^(4)xx7^(0)

Find the value of the (-4)^(3)xx5^(2)xx6^(0) .

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Factorise xy^(2) - xz^(2) , Hence, find the value of : (ii) 40 xx 5.5^(2) - 40 xx 4.5^(2)

Find the value of 1) . (-15)+4-:(5-3) 2) . (-40)xx(-1)+(-28)-:7

Simplify and write the in the exponential form: (2^(4)xx2xx7^(3)xx7^(6))/(2^(3)xx7^(4))

Simplify and write the in the exponential form: ((-3)^(3)xx7^(4)xx7)/(3^(2)xx7^(2))

Observe the following pattern (1xx2)+(2xx3)=(2xx3xx4)/3, (1xx2)+(2xx3)+(3xx4)=(3xx4xx5)/3, (1xx2)+(2xx3)+(3xx4)+(4xx5)=(4xx5xx6)/3 and find the value of \ (1xx2)+(2xx3)+(3xx4)+(4xx5)+(5xx6)

Find each of the products: (-2/7a^4)xx(-3/4a^2b)xx\ (-(14)/5b^2)

Write in exponential form . a. 3^(4)xx3^(5) b. (-7)^(4)xx(-7)^(6)