Home
Class 14
MATHS
Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(xne0...

Let `f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(xne0)`, then `f(x)` is equal to :

A

`x^2-1`

B

`x^2-2`

C

`x^2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    QUANTUM CAT|Exercise QUESTION BANK|196 Videos
  • GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|547 Videos

Similar Questions

Explore conceptually related problems

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

f(x)=log_(e)|x|,xne0, then f'(x) is equal to

If f(x)=(2x-1)/(x+5),xne-5 , then f^(-1)(x) is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

If : f((x^(2)+1)/(x))=(x^(4)+1)/(x^(2))," where "xne0," then: "f'(3)=

If f(x)=log|x|,xne0 then f'(x) equals

If f(x)=log|x|,xne0 , then what is f(x) equal to ?