Home
Class 14
MATHS
If f(x)=4x-5 , g(x)=x^2 and h(x)=1/x the...

If `f(x)=4x-5 , g(x)=x^2 and h(x)=1/x` then `f(g(h(x)))` is :

A

`4/(x-5)`

B

`1/(4x-5)^2`

C

`1/(x/4-5)`

D

`(4/(x^2)-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( f(g(h(x))) \) given the functions \( f(x) = 4x - 5 \), \( g(x) = x^2 \), and \( h(x) = \frac{1}{x} \), we will follow these steps: ### Step 1: Find \( h(x) \) First, we need to evaluate \( h(x) \): \[ h(x) = \frac{1}{x} \] ### Step 2: Substitute \( h(x) \) into \( g(x) \) Next, we substitute \( h(x) \) into \( g(x) \): \[ g(h(x)) = g\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] ### Step 3: Substitute \( g(h(x)) \) into \( f(x) \) Now, we substitute \( g(h(x)) \) into \( f(x) \): \[ f(g(h(x))) = f\left(\frac{1}{x^2}\right) = 4\left(\frac{1}{x^2}\right) - 5 \] ### Step 4: Simplify the expression Now we simplify the expression: \[ f\left(\frac{1}{x^2}\right) = \frac{4}{x^2} - 5 \] ### Final Result Thus, the final expression for \( f(g(h(x))) \) is: \[ f(g(h(x))) = \frac{4}{x^2} - 5 \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    QUANTUM CAT|Exercise QUESTION BANK|196 Videos
  • GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|547 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x),g(x)=(1)/(x^(2)), and h(x)=x^(2), then f(g(x))=x^(2),x!=0,h(g(x))=(1)/(x^(2))h(g(x))=(1)/(x^(2)),x!=0, fog (x)=x^(2) fog(x) =x^(2),x!=0,h(g(x))=(g(x))^(2),x!=0 none of these

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x) is a twice differentiable function such that f'' (x) =-f,f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

If f@g=g@f, where f(x)=2x+5 and g(x)=3x+h, then: h=