Home
Class 14
MATHS
f(x) = 1 - h(x), g(x) = 1 - k(x), h(x) =...

f(x) = 1 - h(x), g(x) = 1 - k(x), h(x) = f(x) + 1
f(x) = g(x) + 1, k(x) = j(x) + 1
`(h(f(k(x)))+j(g(h(x)))+k(j(f(x))))/[f(x)+j(x)+k(x)][f(x).j(x)k(x)]` is equal to :

A

0

B

3

C

`3//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the given functions and their relationships. 1. **Given Functions**: - \( f(x) = 1 - h(x) \) - \( g(x) = 1 - k(x) \) - \( h(x) = f(x) + 1 \) - \( f(x) = g(x) + 1 \) - \( k(x) = j(x) + 1 \) 2. **Substituting \( h(x) \) into \( f(x) \)**: Start with the equation \( f(x) = 1 - h(x) \). Substitute \( h(x) = f(x) + 1 \): \[ f(x) = 1 - (f(x) + 1) \] Simplifying this gives: \[ f(x) = 1 - f(x) - 1 \] \[ f(x) + f(x) = 0 \implies 2f(x) = 0 \implies f(x) = 0 \] 3. **Finding \( h(x) \)**: Now that we have \( f(x) = 0 \), we can find \( h(x) \): \[ h(x) = f(x) + 1 = 0 + 1 = 1 \] 4. **Finding \( g(x) \)**: Using \( f(x) = g(x) + 1 \): \[ 0 = g(x) + 1 \implies g(x) = -1 \] 5. **Finding \( k(x) \)**: Using \( g(x) = 1 - k(x) \): \[ -1 = 1 - k(x) \implies k(x) = 2 \] 6. **Finding \( j(x) \)**: Using \( k(x) = j(x) + 1 \): \[ 2 = j(x) + 1 \implies j(x) = 1 \] 7. **Summary of Values**: - \( f(x) = 0 \) - \( h(x) = 1 \) - \( g(x) = -1 \) - \( k(x) = 2 \) - \( j(x) = 1 \) 8. **Calculating the Expression**: We need to evaluate: \[ \frac{h(f(k(x))) + j(g(h(x))) + k(j(f(x)))}{[f(x) + j(x) + k(x)][f(x) \cdot j(x) \cdot k(x)]} \] - **Calculating \( h(f(k(x))) \)**: Since \( k(x) = 2 \), we have \( f(k(x)) = f(2) = 0 \). Thus, \( h(f(k(x))) = h(0) = 1 \). - **Calculating \( j(g(h(x))) \)**: Since \( h(x) = 1 \), we have \( g(h(x)) = g(1) = -1 \). Thus, \( j(g(h(x))) = j(-1) = 1 \). - **Calculating \( k(j(f(x))) \)**: Since \( f(x) = 0 \), we have \( j(f(x)) = j(0) = 1 \). Thus, \( k(j(f(x))) = k(1) = 2 \). - **Putting it all together**: The numerator becomes: \[ 1 + 1 + 2 = 4 \] - **Calculating the Denominator**: \[ f(x) + j(x) + k(x) = 0 + 1 + 2 = 3 \] \[ f(x) \cdot j(x) \cdot k(x) = 0 \cdot 1 \cdot 2 = 0 \] Therefore, the denominator is: \[ 3 \cdot 0 = 0 \] 9. **Final Expression**: The expression becomes: \[ \frac{4}{0} \] This indicates that the expression is undefined.
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    QUANTUM CAT|Exercise QUESTION BANK|196 Videos
  • GEOMETRY

    QUANTUM CAT|Exercise QUESTION BANK|547 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 6 ,g(x) = 4x + k and fog(x) = gof(x) then k …..

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x) , then f(g(h(x))) is :

Consider f g and h are real-valued functions defined on R. Let f(x)-f(-x)=0 for all x in R, g(x) + g(-x)=0 for all x in R and h (x) + h(-x)=0 for all x in R. Also, f(1) = 0,f(4) = 2, f(3) = 6, g(1)=1, g(2)=4, g(3)=5, and h(1)=2, h(3)=5, h(6) = 3 The value of f(g(h(1)))+g(h(f(-3)))+h(f(g(-1))) is equal to

QUANTUM CAT-FUNCTIONS AND GRAPHS-QUESTION BANK
  1. Find f(f(f(f(f(2)))))) if f(x)=(x+1)/(x-1),x ne 1

    Text Solution

    |

  2. f(x)=1-h(x), g(x)=1-k(x), h(x)=f(x)+1 f(x)=g(x)+1, k(x)=f(x)+1 Fin...

    Text Solution

    |

  3. f(x) = 1 - h(x), g(x) = 1 - k(x), h(x) = f(x) + 1 f(x) = g(x) + 1, k...

    Text Solution

    |

  4. If f(x) and g(x) are odd functions of x, then which of the following i...

    Text Solution

    |

  5. If f(x) is an even function of x and g(x) is an odd function then whic...

    Text Solution

    |

  6. If y=" min "(x^(2)+2, 6-3x), then the greatest value of y for x gt0

    Text Solution

    |

  7. If p^(2)+q^(2)+r^(2)=1, then the maximum vlaue of pqr is :

    Text Solution

    |

  8. find the value of f(5), if f ( x ) = 3 x^2 − 4x ?

    Text Solution

    |

  9. Find the value of f ( f ( − 3 ) ) , if f ( x ) = (x+1)/ x

    Text Solution

    |

  10. Ramesh bought a chair for Rs. 1540 and sold it to Suresh. If Ramesh ea...

    Text Solution

    |

  11. A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) ...

    Text Solution

    |

  12. A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) ...

    Text Solution

    |

  13. A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) ...

    Text Solution

    |

  14. A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) ...

    Text Solution

    |

  15. A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) ...

    Text Solution

    |

  16. What is the maximum possible value of xy, where |x+5|-1=0 and y=9-|x-4...

    Text Solution

    |

  17. For real x,y such that f(x) ne 0, if f(x+y) = f(x).f(y), what's the va...

    Text Solution

    |

  18. Suresh bought a cell phone from a shop. If he sells it at Rs. 8400 to ...

    Text Solution

    |

  19. Let a function is defined as f(x)=(a^(x)+a^(-x))/(2), a gt 0, what is ...

    Text Solution

    |

  20. If |(30-x)/(3)|lt4, then find x

    Text Solution

    |