Home
Class 12
MATHS
Show that sin^(-1)(1/sqrt(10))+cos^(-1)(...

Show that `sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES DETERMINANTS PROBABILITY

    USHA PUBLICATION|Exercise EXERCISE|59 Videos
  • PRACTICE PAPER

    USHA PUBLICATION|Exercise PRACTICE PAPER|95 Videos

Similar Questions

Explore conceptually related problems

Show that "sin"^(-1)(2xsqrt(1-x^(2)))=2"cos"^(-1)x,1/(sqrt(2))lexle1 .

Show that: 4(cot^(-1)(3/2)+cosec^(-1)sqrt(26))=pi .

Show that sin^(-1)sqrt(frac[x-q][p-q])=cos^(-1)sqrt(frac[p-x][p-q])=cot^(-1)sqrt(frac[p-x][x-q])

Show that "sin"^(-1)(4)/(5) +2"tan"^(-1)(1)/(3) =(pi)/(2) .

Express the value of "sin"^(-1)1/sqrt5 +"cos"(-1) 3/sqrt(10) in simplest form.

Show that "tan"^(-1)sqrt(x)=1/(2)"cos"^(-1)((1-x)/(1+x)),x in[0,1] .