Home
Class 11
MATHS
Convert the sums or differences into pro...

Convert the sums or differences into products:
`sin 12 A + sin 4 A `

Text Solution

AI Generated Solution

The correct Answer is:
To convert the sum \( \sin 12A + \sin 4A \) into a product, we can use the sine addition formula. Here’s a step-by-step solution: ### Step 1: Identify the angles We have: - \( c = 12A \) - \( d = 4A \) ### Step 2: Use the sine addition formula The formula for the sum of sines is: \[ \sin c + \sin d = 2 \sin\left(\frac{c + d}{2}\right) \cos\left(\frac{c - d}{2}\right) \] ### Step 3: Calculate \( \frac{c + d}{2} \) and \( \frac{c - d}{2} \) First, calculate \( c + d \): \[ c + d = 12A + 4A = 16A \] Now, calculate \( \frac{c + d}{2} \): \[ \frac{c + d}{2} = \frac{16A}{2} = 8A \] Next, calculate \( c - d \): \[ c - d = 12A - 4A = 8A \] Now, calculate \( \frac{c - d}{2} \): \[ \frac{c - d}{2} = \frac{8A}{2} = 4A \] ### Step 4: Substitute back into the formula Now substitute these values back into the sine addition formula: \[ \sin 12A + \sin 4A = 2 \sin(8A) \cos(4A) \] ### Final Answer Thus, the expression \( \sin 12A + \sin 4A \) can be converted into the product: \[ \sin 12A + \sin 4A = 2 \sin(8A) \cos(4A) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (C ) |30 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5(A)|49 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Convert the sums or differences into products: sin 4x + cos 2x

Convert the sums or differences into products: sin 37 ^(@) + sin 21 ^(@)

Convert the sums or differences into products: cos 12 alpha + cos 8 alpha

Convert the sums or differences into products: sin 61^(@) - cos 39^(@)

Convert the sums or differences into products: cos 25 ^(@) - cos 37^(@)

Convert the sums or differences into products: cos 79^(@) + cos 11 ^(@)

Convert the followng into products: (i) sin 53 ^(@) + sin 21 ^(@), (ii) cos 83^(@) - cos 17^(@), (iii) sin 50^(@)- cos 80^(@)

Express in the products into sums or difference of sines and cosines : 2 sin 5theta. Cos 3theta

Convert the products into sum or difference. 2 sin 48^(@) cos 12 ^(@)

Convert each of the following products into the sum or difference of sines and cosines: \ 2sin3thetasintheta