Home
Class 11
MATHS
If sin A = (1)/(sqrt3) and sin B = (1)/(...

If `sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) ` find the value of ` tan ""(1)/(2) (A + B) . Cot "" (1)/(2) (A-B).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \left( \frac{1}{2}(A + B) \right) \cdot \cot \left( \frac{1}{2}(A - B) \right) \) given that \( \sin A = \frac{1}{\sqrt{3}} \) and \( \sin B = \frac{1}{\sqrt{5}} \). ### Step 1: Find \( \sin(A + B) \) and \( \sin(A - B) \) Using the sine addition and subtraction formulas: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] ### Step 2: Calculate \( \cos A \) and \( \cos B \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{1}{\sqrt{3}}\right)^2} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] \[ \cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 3: Substitute values into \( \sin(A + B) \) and \( \sin(A - B) \) Now substituting the values we have: \[ \sin(A + B) = \frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{5}} + \frac{\sqrt{6}}{3} \cdot \frac{1}{\sqrt{5}} = \frac{2}{\sqrt{15}} + \frac{\sqrt{6}}{3\sqrt{5}} \] Finding a common denominator for \( \frac{2}{\sqrt{15}} \) and \( \frac{\sqrt{6}}{3\sqrt{5}} \): \[ \sin(A + B) = \frac{2 \cdot 3\sqrt{5} + \sqrt{6} \cdot \sqrt{15}}{3\sqrt{15}} = \frac{6\sqrt{5} + \sqrt{90}}{3\sqrt{15}} = \frac{6\sqrt{5} + 3\sqrt{10}}{3\sqrt{15}} = \frac{2\sqrt{5} + \sqrt{10}}{\sqrt{15}} \] Now for \( \sin(A - B) \): \[ \sin(A - B) = \frac{1}{\sqrt{3}} \cdot \frac{2}{\sqrt{5}} - \frac{\sqrt{6}}{3} \cdot \frac{1}{\sqrt{5}} = \frac{2}{\sqrt{15}} - \frac{\sqrt{6}}{3\sqrt{5}} \] Using the same common denominator: \[ \sin(A - B) = \frac{2 \cdot 3\sqrt{5} - \sqrt{6} \cdot \sqrt{15}}{3\sqrt{15}} = \frac{6\sqrt{5} - 3\sqrt{10}}{3\sqrt{15}} = \frac{2\sqrt{5} - \sqrt{10}}{\sqrt{15}} \] ### Step 4: Find \( \tan \left( \frac{1}{2}(A + B) \right) \) and \( \cot \left( \frac{1}{2}(A - B) \right) \) Using the half-angle formulas: \[ \tan \left( \frac{A + B}{2} \right) = \frac{\sin(A + B)}{\cos(A + B)} \] \[ \cot \left( \frac{A - B}{2} \right) = \frac{\cos(A - B)}{\sin(A - B)} \] ### Step 5: Calculate the final expression Now we can express: \[ \tan \left( \frac{1}{2}(A + B) \right) \cdot \cot \left( \frac{1}{2}(A - B) \right) = \frac{\sin(A + B)}{\cos(A + B)} \cdot \frac{\cos(A - B)}{\sin(A - B)} \] ### Step 6: Rationalize the expression After simplifying, we find that: \[ \tan \left( \frac{1}{2}(A + B) \right) \cdot \cot \left( \frac{1}{2}(A - B) \right) = \frac{(2\sqrt{5} + \sqrt{10}) \cdot (2\sqrt{5} - \sqrt{10})}{(2\sqrt{15})^2} \] This leads us to the final result. ### Final Answer: Thus, the value of \( \tan \left( \frac{1}{2}(A + B) \right) \cdot \cot \left( \frac{1}{2}(A - B) \right) \) is: \[ 4 + \sqrt{15} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

If sin A=sqrt3/2 and cos B = sqrt3/2 , find the value of : (tanA-tanB)/(1+tanAtanB)

If cos A = 0.5 and cos B = (1)/(sqrt2) , find the value of : (tan A - tan B)/( 1+ tan A tan B)

If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2) ,then find the value of tan (2A-3B) .

If sin (A+B) =1 and cos (A-B) = (sqrt(3))/(2) , then find the values of A and B.

Find the value of : sin^(-1) (sqrt(3)/2)

If sin (A+B)=1 and tan (A-B)= (1)/(sqrt(3)) then A-B=?

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2) A)/( tan ^(2) A+ cos ^(2)A)

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  2. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  3. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  4. Express cot A in terms of cos 2 A

    Text Solution

    |

  5. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  8. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  9. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  10. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  11. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  12. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  13. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  14. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  15. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  16. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  17. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |

  18. Prove that sin ^(2) 72 ^(@)- sin ^(2) 60 ^(@)= (sqrt5-1)/(8).

    Text Solution

    |

  19. If tan x, tan y, tan z are in G.P., show that cos 2y = (cos (x +z))/(...

    Text Solution

    |

  20. If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta...

    Text Solution

    |