Home
Class 11
MATHS
If tan "" (alpha )/(2) and tan "" (beta...

If ` tan "" (alpha )/(2) and tan "" (beta)/( 2)` are the roots of the equation `8x ^(2) -26x + 15 =0,` then find the value of `cos (alpha + beta).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\alpha + \beta) \) given that \( \tan\left(\frac{\alpha}{2}\right) \) and \( \tan\left(\frac{\beta}{2}\right) \) are the roots of the quadratic equation \( 8x^2 - 26x + 15 = 0 \). ### Step-by-Step Solution: 1. **Identify the coefficients from the quadratic equation**: The given quadratic equation is \( 8x^2 - 26x + 15 = 0 \). Here, \( a = 8 \), \( b = -26 \), and \( c = 15 \). 2. **Calculate the sum of the roots**: The sum of the roots \( \tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right) \) can be found using the formula: \[ \text{Sum of roots} = -\frac{b}{a} = -\frac{-26}{8} = \frac{26}{8} = \frac{13}{4} \] 3. **Calculate the product of the roots**: The product of the roots \( \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \) is given by: \[ \text{Product of roots} = \frac{c}{a} = \frac{15}{8} \] 4. **Use the tangent addition formula**: We know that: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)} \] Substituting the values we found: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{13}{4}}{1 - \frac{15}{8}} \] 5. **Simplify the denominator**: First, calculate \( 1 - \frac{15}{8} \): \[ 1 - \frac{15}{8} = \frac{8}{8} - \frac{15}{8} = -\frac{7}{8} \] 6. **Substitute back into the tangent formula**: Now substituting back: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\frac{13}{4}}{-\frac{7}{8}} = \frac{13}{4} \cdot -\frac{8}{7} = -\frac{104}{28} = -\frac{26}{7} \] 7. **Find \( \cos(\alpha + \beta) \)**: We can use the identity: \[ \cos(\alpha + \beta) = \frac{1 - \tan^2\left(\frac{\alpha + \beta}{2}\right)}{1 + \tan^2\left(\frac{\alpha + \beta}{2}\right)} \] First, calculate \( \tan^2\left(\frac{\alpha + \beta}{2}\right) \): \[ \tan^2\left(\frac{\alpha + \beta}{2}\right) = \left(-\frac{26}{7}\right)^2 = \frac{676}{49} \] 8. **Substitute into the cosine formula**: Now substituting into the cosine formula: \[ \cos(\alpha + \beta) = \frac{1 - \frac{676}{49}}{1 + \frac{676}{49}} = \frac{\frac{49 - 676}{49}}{\frac{49 + 676}{49}} = \frac{49 - 676}{49 + 676} = \frac{-627}{725} \] Thus, the value of \( \cos(\alpha + \beta) \) is: \[ \cos(\alpha + \beta) = -\frac{627}{725} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

If "tan"(alpha)/(2) and "tan"(beta)/(2) are the roots of the equation 8x^(2)-26x+15=0 , then find the value of "tan"((alpha+beta)/(2))

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the quadratic equation x^(2) - 4x - 6 = 0 , find the values of alpha^(2) + beta^(2) .

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  2. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  3. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  4. Express cot A in terms of cos 2 A

    Text Solution

    |

  5. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  8. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  9. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  10. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  11. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  12. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  13. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  14. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  15. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  16. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  17. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |

  18. Prove that sin ^(2) 72 ^(@)- sin ^(2) 60 ^(@)= (sqrt5-1)/(8).

    Text Solution

    |

  19. If tan x, tan y, tan z are in G.P., show that cos 2y = (cos (x +z))/(...

    Text Solution

    |

  20. If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta...

    Text Solution

    |