Home
Class 11
MATHS
Find sin ""(x)/(2), cos "" (x)/(2) and t...

Find `sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2)` in each of the case:
`sin x = (1)/(4), x ` in II quadrant.

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \sin \frac{x}{2} \), \( \cos \frac{x}{2} \), and \( \tan \frac{x}{2} \) given that \( \sin x = \frac{1}{4} \) and \( x \) is in the second quadrant, we can follow these steps: ### Step 1: Find \( \cos x \) We know the identity: \[ \sin^2 x + \cos^2 x = 1 \] Given \( \sin x = \frac{1}{4} \), we can substitute this into the identity: \[ \left(\frac{1}{4}\right)^2 + \cos^2 x = 1 \] \[ \frac{1}{16} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{1}{16} = \frac{16}{16} - \frac{1}{16} = \frac{15}{16} \] Now, taking the square root: \[ \cos x = \pm \sqrt{\frac{15}{16}} = \pm \frac{\sqrt{15}}{4} \] Since \( x \) is in the second quadrant, \( \cos x \) is negative: \[ \cos x = -\frac{\sqrt{15}}{4} \] ### Step 2: Find \( \cos \frac{x}{2} \) Using the half-angle formula: \[ \cos x = 2 \cos^2 \frac{x}{2} - 1 \] Substituting the value of \( \cos x \): \[ -\frac{\sqrt{15}}{4} = 2 \cos^2 \frac{x}{2} - 1 \] Rearranging gives: \[ 2 \cos^2 \frac{x}{2} = 1 - \frac{\sqrt{15}}{4} \] \[ 2 \cos^2 \frac{x}{2} = \frac{4}{4} - \frac{\sqrt{15}}{4} = \frac{4 - \sqrt{15}}{4} \] \[ \cos^2 \frac{x}{2} = \frac{4 - \sqrt{15}}{8} \] Taking the square root: \[ \cos \frac{x}{2} = \sqrt{\frac{4 - \sqrt{15}}{8}} \] Since \( \frac{x}{2} \) is in the first quadrant (as \( x \) is in the second quadrant), \( \cos \frac{x}{2} \) is positive: \[ \cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{\sqrt{8}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}} \] ### Step 3: Find \( \sin \frac{x}{2} \) Using the identity: \[ \sin^2 \frac{x}{2} = 1 - \cos^2 \frac{x}{2} \] Substituting the value of \( \cos^2 \frac{x}{2} \): \[ \sin^2 \frac{x}{2} = 1 - \frac{4 - \sqrt{15}}{8} \] \[ \sin^2 \frac{x}{2} = \frac{8}{8} - \frac{4 - \sqrt{15}}{8} = \frac{8 - (4 - \sqrt{15})}{8} = \frac{4 + \sqrt{15}}{8} \] Taking the square root: \[ \sin \frac{x}{2} = \sqrt{\frac{4 + \sqrt{15}}{8}} \] Since \( \frac{x}{2} \) is in the first quadrant, \( \sin \frac{x}{2} \) is positive: \[ \sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{8}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}} \] ### Step 4: Find \( \tan \frac{x}{2} \) Using the identity: \[ \tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \] Substituting the values: \[ \tan \frac{x}{2} = \frac{\frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}}{\frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}}} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}} \] ### Final Answers \[ \sin \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}, \quad \cos \frac{x}{2} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}}, \quad \tan \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{4 - \sqrt{15}}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise EXERCISE 5 (D) |60 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • CONIC SECTIONS

    ICSE|Exercise Multiple Choice Questions |33 Videos

Similar Questions

Explore conceptually related problems

Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the case: tan x = (-4)/(3) , x in II quadrant.

Find sin x/2 ,cos x/2 and tan x/2 of the following : sin x =1/4, x in quadrant II.

Find sin x/2 ,cos x/2 and tan x/2 of the following : cotx=-1/3 , x in quadrant III

Find sin x/2 ,cos x/2 and tan x/2 of the following : tanx=-4/3,""x in quadrant II

Find sin x/2 ,cos x/2 and tan x/2 of the following : tanx=-4/3, x in quadrant II

If y=sin^(-1)x+sin^(-1)sqrt(1-x^2) , find (dy)/(dx) in each of the following cases: (i) x in (0,\ 1) (ii) x in (-1,\ 0)

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

ICSE-COMPOUND AND MULTIPLE ANGLES -CHEPTER TEST
  1. Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that ...

    Text Solution

    |

  2. Show that ( cos 10^(@) + sin 10 ^(@))/( cos 10^(@) - sin 10 ^(@)) = ta...

    Text Solution

    |

  3. If sin 2 A = 4/5, find the value of tan A, (0^(@) le A le (pi)/(3))

    Text Solution

    |

  4. Express cot A in terms of cos 2 A

    Text Solution

    |

  5. Write cos 4 theta in terms of cos theta.

    Text Solution

    |

  6. A positive acute angle is divided into two parts whose tangents are 1/...

    Text Solution

    |

  7. Show that cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

    Text Solution

    |

  8. Show that (sin 5 A + 2 sin 8A + sin 11 A)/( sin 8A + 2 sin 11 A + sin ...

    Text Solution

    |

  9. Show that (1)/(2 sin 10^(@)) - 2 sin 70^(@) =1.

    Text Solution

    |

  10. Show that sin 19^(@) + sin 41^(@) + sin 83^(@) = sin 23 ^(@) + sin 37^...

    Text Solution

    |

  11. If sin A = (1)/(sqrt3) and sin B = (1)/(sqrt5) find the value of tan...

    Text Solution

    |

  12. If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (the...

    Text Solution

    |

  13. If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the eq...

    Text Solution

    |

  14. Prove that ((cos A + cos B)/( sin A - sin B )) ^(n) + ((sin A + sin B ...

    Text Solution

    |

  15. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  16. Find sin ""(x)/(2), cos "" (x)/(2) and tan "" (x)/(2) in each of the c...

    Text Solution

    |

  17. Prove that cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x -1.

    Text Solution

    |

  18. Prove that sin ^(2) 72 ^(@)- sin ^(2) 60 ^(@)= (sqrt5-1)/(8).

    Text Solution

    |

  19. If tan x, tan y, tan z are in G.P., show that cos 2y = (cos (x +z))/(...

    Text Solution

    |

  20. If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta...

    Text Solution

    |