Home
Class 11
MATHS
Solve: 4 cos ^(2) theta = 3 . (theta ^(@...

Solve: `4 cos ^(2) theta = 3 . (theta ^(@) le theta lt 360 ^(@)).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4 \cos^2 \theta = 3 \) for \( \theta \) in the range \( 0^\circ \leq \theta < 360^\circ \), we can follow these steps: ### Step 1: Rewrite the equation Start with the original equation: \[ 4 \cos^2 \theta = 3 \] ### Step 2: Divide both sides by 4 To isolate \( \cos^2 \theta \), divide both sides of the equation by 4: \[ \cos^2 \theta = \frac{3}{4} \] ### Step 3: Take the square root Next, take the square root of both sides. Remember to consider both the positive and negative roots: \[ \cos \theta = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2} \] ### Step 4: Find the angles corresponding to \( \cos \theta = \frac{\sqrt{3}}{2} \) The cosine function is positive in the first and fourth quadrants. The reference angle where \( \cos \theta = \frac{\sqrt{3}}{2} \) is: \[ \theta = 30^\circ \quad \text{(or } \frac{\pi}{6} \text{ radians)} \] Thus, the angles in the specified range are: \[ \theta = 30^\circ \quad \text{and} \quad \theta = 360^\circ - 30^\circ = 330^\circ \] ### Step 5: Find the angles corresponding to \( \cos \theta = -\frac{\sqrt{3}}{2} \) The cosine function is negative in the second and third quadrants. The reference angle where \( \cos \theta = -\frac{\sqrt{3}}{2} \) is: \[ \theta = 180^\circ - 30^\circ = 150^\circ \quad \text{and} \quad \theta = 180^\circ + 30^\circ = 210^\circ \] ### Step 6: Compile all solutions The solutions for \( \theta \) in the range \( 0^\circ \leq \theta < 360^\circ \) are: \[ \theta = 30^\circ, 150^\circ, 210^\circ, 330^\circ \] ### Final Answer Thus, the complete solution set is: \[ \theta = 30^\circ, 150^\circ, 210^\circ, 330^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve 2 cos^(2) theta = 3 sin theta

Solve 2 cos^(2) theta +3 sin theta=0 .

Solve for the two smallest positive values of theta, to the nearest minute, cot ^(2) theta - 3 cot theta - 2 =0, (0^(@) lt theta lt 360^(@)).

Solve sin 9 theta = sin theta, for 0^(@) lt theta lt 360^(@).

Solve 2 sin theta cos theta = cos theta. ( 0^(@) < theta lt 360^(@)).

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Solve : 7 sin^(2) theta + 3 cos^(2) theta = 4 .

Solve: sin 2 theta = cos 3 theta.