Home
Class 11
MATHS
Solve 2 sin ^(2) phi = sin phi, ( 0^(@) ...

Solve `2 sin ^(2) phi = sin phi, ( 0^(@) le phi lt 360^(@)).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sin^2 \phi = \sin \phi \) for \( 0^\circ \leq \phi < 360^\circ \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ 2 \sin^2 \phi = \sin \phi \] We can rearrange it to form a standard quadratic equation: \[ 2 \sin^2 \phi - \sin \phi = 0 \] ### Step 2: Factoring the Equation Next, we can factor out \( \sin \phi \): \[ \sin \phi (2 \sin \phi - 1) = 0 \] ### Step 3: Setting Each Factor to Zero Now, we set each factor equal to zero: 1. \( \sin \phi = 0 \) 2. \( 2 \sin \phi - 1 = 0 \) ### Step 4: Solving the First Factor For the first factor \( \sin \phi = 0 \): \[ \phi = 0^\circ \quad \text{or} \quad \phi = 180^\circ \] ### Step 5: Solving the Second Factor For the second factor \( 2 \sin \phi - 1 = 0 \): \[ 2 \sin \phi = 1 \implies \sin \phi = \frac{1}{2} \] The angles that satisfy \( \sin \phi = \frac{1}{2} \) are: \[ \phi = 30^\circ \quad \text{or} \quad \phi = 150^\circ \] ### Step 6: Combining the Solutions Now, we combine all the solutions we found: \[ \phi = 0^\circ, 30^\circ, 150^\circ, 180^\circ \] ### Final Answer Thus, the possible values of \( \phi \) are: \[ \phi = 0^\circ, 30^\circ, 150^\circ, 180^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise EXERCISE 6|33 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos
  • TRIGONOMETRIC FUNCTION

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos

Similar Questions

Explore conceptually related problems

Solve: sin ^(2) x + sin x - 2 =0 , (0^(@) lt x lt 360^(@)).

Solve: sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).

Solve cos ^(2) theta - sin theta - (1)/(4) =0 ( 0^(@) lt theta lt 360^(@)).

Prove: (sin phi - cos phi) ^(2) =1 - sin 2 phi.

Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (theta + phi) = cos ( 2 theta + 2 phi).

If sin (7 phi+9^(@))=cos2phi , find a value of phi .

If phi_(1) and phi_(2) be the apparent angles of dip observed in two vertical planes at right angles to each other , then show that the true angle of dip phi is given by cot^(2) phi = cot^(2) phi_(1) + cot^(2) phi_(2) .

Prove that sin^(2)phi(1+cot^(2)phi)=1

Which of the following curves represents correctly the oscillation given by y=y_0sin(omegat-phi) where 0lt phi lt 90^@ ? .

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .